Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T08:25:46.668Z Has data issue: false hasContentIssue false

Impact of environmental conditions and seed physico-chemical characteristics on the resistance of cowpea genotypes to Callosobruchus maculatus F. (Coleoptera: Chrysomelidae) infestation

Published online by Cambridge University Press:  21 December 2018

D. Kosini*
Affiliation:
School of Health Sciences, Saint-Jérôme Catholic University Institute of Douala, Douala, Cameroon
E.N. Nukenine
Affiliation:
Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon
C. Saidou
Affiliation:
Department of Chemical Engineering and Environment, University Institute of Technology, University of Ngaoundere, Ngaoundere, Cameroon
J.-B.T. Noubissié
Affiliation:
Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon
S. Dolinassou
Affiliation:
Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon
*
*Author for correspondence Phone: 237-691 25 93 40 Fax: E-mail: kosinid@yahoo.fr

Abstract

There is a need to improve research and extension documentation to assist farmers in making better use of the available resistant cowpea genotypes to insects attack during storage. A study was conducted to determine the resistance of ten cowpea genotypes [Vigna unguiculata (L.) Walp.] to Callosobruchus maculatus F. attack in the Sudano-Guinean and Sudano-Sahelian agro-ecological zones (SS) of Cameroon. Thereafter, seeds were analyzed for physical properties and chemical composition to determine the main parameters of their resistance against C. maculatus. The SS was more suitable for insect infestation. Genotypes were classified into resistant to highly susceptible. Results showed that the physical characteristics of seeds were less important than the chemical components for conferring resistance to C. maculatus. Two genotypes, Samira and Lade, consistently demonstrated high tolerance to infestation by C. maculatus, and therefore may be recommended for use in breeding programs as a source of resistance and then to minimize the dependence on insecticides for the control of insect pests under subsistence farming conditions in Cameroon.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J.I. & Baidoo, P.K. (2008) Susceptibility of five cowpea (Vigna unguiculata) varieties attacked by Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). Journal of the Ghana Science Association 8(2), 8592.Google Scholar
Addo-Bediako, A., Lephale, S. & Ayodele, V. (2012) Susceptibility of seven cowpea genotypes (Vigna unguiculatus) to cowpea beetle (Callosobruchus maculates). Agricultural Science Research Journal 2(2), 6569.Google Scholar
Adeniyi, S.A., Orjiekwe, C.L., Ehiagbonare, J.E. & Arimah, B.D. (2010) Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against beans weevil (Acanthscelides obtectus). International Journal of Physical Science 5(6), 753762.Google Scholar
Adeyemi, M.M.H. (2010) The potential of secondary metabolites in plant material as deterents against insect pests. African Journal of Pure and Applied Chemistry 11, 243246.Google Scholar
AFNOR (Association Française de Normalisation). (1981) Recueil de normes françaises. Corps gras, graines oléagineuses, produits dérivés. 2ème édition. Paris, France, AFNOR.Google Scholar
AFNOR (Association Française de Normalisation). (1982) Recueil des normes françaises des produits dérivés des fruits et légumes: Jus de fruits. 1ère édition. Paris, France, AFNOR 327 p.Google Scholar
AFNOR (Association Française de Normalisation). (1984) Recueil de normes françaises. Produits agricoles alimentaires: directives générales pour le dosage de l'azote avec minéralisation selon la méthode de Kjedahl. Paris, France, AFNOR.Google Scholar
Ali, S.M., Mahgoub, S.M., Hamed, M.S. & Gharib, M.S.A. (2004) Infestation potential of Callosobrunchus chinensis and C. maculatus on certain broad bean seed varieties. Egyptian Journal of Agricultural Research 82, 11271135.Google Scholar
Badii, K.B., Asante, S.K. & Sowley, E.N.K. (2013) Varietal susceptibility of cowpea (Vigna unguiculata L.) to the storage beetle, Callosobruchus maculatus F. (Coleoptera: Bruchidae). Intional Journal of Scientific & Technological Research 2(4), 8289.Google Scholar
Bamishaiye, E.I., Bamshaiye, O.M. & Adegbola, J.A. (2011) Bambara groundnut: an under-utilized nut in Africa. Advanced Agricultural Biotechnology 1, 6072.Google Scholar
Castro, M.J.P., Baldin, E.L.L., Cruz, P.L., Souza, C.M. & Silva, P.H.S. (2013) Characterization of cowpea genotype resistance to Callosobruchus maculatus. Pesquisa Agropecuária Brasileira 48(9), 12011209.Google Scholar
Demeure, G. (1985) Analyse de quelques facteurs liés à la plante hôte Vigna unguiculata (Walp) influençant la reproduction et le developpement de Callosobruchus maculatus (Fabricius) Coleoptere Bruchidae. Thèse de Doctorat 3ème Cycle, Université François Rabelais de Tours, 97 pp.Google Scholar
Devani, M.B., Shishoo, J.C., Shal, S.A. & Suhagia, B.N. (1989) Spectrophotometrical method for determination of nitrogen in Kjeldahl digest. Journal of the Association of Official Analytical Chemists 72, 953956.Google Scholar
Dobie, P. (1974) The laboratory assessment of the inherent susceptibility of maize varieties to postharvest infestation by Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Stored Products Research 10, 183197.Google Scholar
Dubois, M., Gilles, K.A., Hamilton, J.K., Roberts, P.A. & Smith, F. (1956) Colorimetric method for determination of sugar and related substances. Analytical Chemistry 28, 350356.Google Scholar
Edde, P.A. & Amatobi, C.I. (2003) Seed coat has no value in protecting cowpea seed against attack by Callosobruchus maculatus (F.). Journal of Stored Products Research 39, 110.Google Scholar
Edvardsson, M., Tregenza, T. & Rodriguez-Munoz, R. (2008) No evidence that female bruchid beetles, Callosobruchus maculatus, use remating to reduce costs of inbreeding. Animal Behaviour 75, 15191524.Google Scholar
Eker, T., Erler, F., Adak, A., Imrek, B., Guven, H., Tosun, H.S., Sari, D., Sari, H., Upadhyaya, H.D., Toker, C. & Ikten, C. (2018) Screening of chickpea accessions for resistance against the pulse beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae). Journal of Stored Products Research 76, 5157.Google Scholar
Erler, F., Ceylan, F., Erdemir, T. & Toker, C. (2009) Preliminary results on evaluation of chickpea, Cicer arietinum, genotypes for resistance to the pulse beetle, Callosobruchus maculatus. Journal of Insect Science 9, 17.Google Scholar
Gbaye, O.A., Millard, J.C. & Holloway, G.J. (2012) Synergistic effects of geographical strain, temperature and larval food on insecticide tolerance in Callosobruchus maculatus (F.). Journal of Applied Entomology 136, 282291.Google Scholar
Harborne, J.B. (1973) Phytochemical Methods. 1st edn. London, Chapman and Hall, 273 pp.Google Scholar
Harinder, P.S., Makkar, P. & Siddhuraju, K.B. (2007) Plant Secondary Metabolites. Totowa, New Jersey, Humana press, 130 pp.Google Scholar
Ignacimuthu, S., Janarthanan, S. & Balachandran, B. (2000) Chemical basis of resistance in pulses to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 36, 8999.Google Scholar
IITA (International Institute of Tropical Agriculture). (1989) Annual Report 1988/89. Ibadan Nigeria.Google Scholar
Jackai, L.E.N. & Asante, S.K. (2003) A case for the standardization of protocols used in screening cowpea, Vigna unguiculata for resistance to Callosobruchus maculatus F. (Coleoptera: Bruchidae). Journal of Stored Products Research 39, 251263.Google Scholar
Jain, R.K. & Bal, S. (1997) Properties of pearl millet. Journal of Agricultural Engineering Research 66, 8591.Google Scholar
Khaliq, A., Javed, M., Sohail, M. & Sagheer, M. (2014) Environmental effects on insects and their population dynamics. Journal of Entomology and Zoology Studies 2(2), 17.Google Scholar
Lale, N.E.S. & Vidal, S. (2003) Effect of constant temperature and humidity on oviposition and development of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) on Bambara groundnut, Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research 39(5), 459470.Google Scholar
Lephale, S., Addo-Bediako, A. & Ayodele, V. (2012) Susceptibility of seven cowpea genotypes (Vigna unguiculata) to cowpea beetle (Callosobruchus maculatus). Agricultural Science Research Journal 2(2), 6569.Google Scholar
Makkar, H.P.S., Blummel, M., Borowy, N.K. & Becker, K. (1993) Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61, 161165.Google Scholar
Modu, S., Laminu, H.H. & Abba Sanda, F. (2010) Evaluation of the nutritional value of a composite meal prepared from pearl millet (Pennisetum typhoideum) and cowpea (Vigna unguiculata). Bayero Journal of Pure and Applied Sciences 3(1), 164168.Google Scholar
Mogbo, T.C., Okeke, T.E. & Akunne, C.E. (2014) Studies on the resistance of cowpea seeds (Vigna unguiculata) to weevil (Callosobruchus maculatus) infestations. American Journal of Zoological Research 2(2), 3740.Google Scholar
Mohammad, R.S., Reza, A., Akram, A. & Abbas, A. (2010) Moisture-depend physical properties of safflower (Goldasht). Advanced Journal of Food Science & Technology 2(6), 340345.Google Scholar
Mohsenin, N.N. (1986) Physical Properties of Plant and Animal Materials. 2nd edn. New York, USA, Gordon and Breach Science Publishers.Google Scholar
Nalini, R., Kumari, R.U., Rajavel, D.S. & Baskaran, R.K.M. (2012) Studies on relative resistance of cowpea genotypes to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) both under field and laboratory condition. International Journal of Advanced Biological Science 2(3), 496499.Google Scholar
Nguyen, D.T., Pham, T.V., Rodriguez de Gil, P., Hicks, T., Wang, Y., Li, I., Bellara, A., Romano, J.L., Kim, E.S., Holmes, H., Chen, Y-H. & Kromrey, J.D. (2014) ANOVA_HOV: a SAS® macro for testing homogeneity of variance in one-factor ANOVA models. Sesug, 112. In SouthEast SAS Users Group 2014 Proceedings. Cary, NC: SAS Institute; Retrieved from http://analytics.ncsu.edu/sesug/2014/SD-05.pdfGoogle Scholar
Noubissié, J.B.T., Bell, J.M., Ngakeu, D.F., Njintang, N.Y. & Youmbi, E. (2011) Diallel analysis of cowpea (Vigna unguiculata (L.) Walp.) for some physical properties of seed under the Sudano-guinean conditions. Agriculture and Biology Journal of North America 2(4), 698707.Google Scholar
Nyamador, S.W. (2009) Influence des traitements à base d'huiles essentielles sur les capacités de reproduction de Callosobruchus subinnotatus pic. et de Callosobruchus maculatus F. (Coleoptera: Bruchidae): mecanisme d'action de l'huile essentielle de Cymbopogon giganteus chiov. Thèse de Doctorat, Université de Lomé, Togo, 177 pp.Google Scholar
Olakojo, S.A., Ayanwole, J.A. & Obasemola, V.I. (2007) Laboratory screening of seeds of some cowpea genotypes (Vigna unguiculata) for tolerance to cowpea beetles (Callosobruchus maculatus) in a hot humid environment. American-Eurasian Journal of Agricultural & Environmental Sciences 2(5), 528533.Google Scholar
Ouedraogo, P.A., Sou, S., Sanon, A., Monge, J.P., Huignard, J., Tran, B. & Credland, P.F. (1996) Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Pteromalidae) in two climatic zones of Burkina Faso. Bulletin of Entomological Research 86(6), 695702.Google Scholar
Phillips, R.D., McWatters, K.H., Chinnan, M.S., Hung, Y.C., Beuchat, L.R., Sefa-Dedeh, S., Sakyi-Dawson, E., Ngoddy, P., Nnanyelugo, D., Enwere, J., Komey, N.S., Liu, K., Mensa-Wilmat, Y., Nnanna, I.A., Okeke, C., Prinyawiwatkul, W. & Saalia, F.K. (2003) Utilisation of cowpea as for human food. Field Crops Research 82, 193213.Google Scholar
Redden, R.J. & McGuire, J. (1983) The genetic evaluation of bruchid resistance in seeds of cowpea. Australian Journal of Agricultural Research 34, 707715.Google Scholar
Sarwar, M. (2012) Assessment of resistance to the attack of bean beetle Callosobruchus maculatus (Fabricius) in chickpea genotypes on the basis of various parameters during storage. Songklanakarin Journal of Science and Technology 34(3), 287291.Google Scholar
SAS Institute (2003) The SAS System Version 9.1 for Windows. Cary, NC, USA, SAS Institute.Google Scholar
Sodipo, O.A. & Ayalogu, E.O. (1999) Environment management. Journal of Applied Science 2, 58.Google Scholar
Swella, G.B. & Mushobozy, D.M.K. (2009) Comparative susceptibility of different legume seeds to infestation by cowpea bruchid Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Plant Protection Science 45, 1924.Google Scholar
Taylor, T.A. (1974) On the population dynamics of Taeniothrips sjostedti (Tribom) (Thrisanoptera: Thripidae) on cowpea and alternate host, Centrosema pubescens Benth. in Nigeria. Revue de Zoologie Africaine 88, 689702.Google Scholar
Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S. & Colls, J. (2008) Effects of climate change on crop production in Cameroon. Climate Research 36, 6570.Google Scholar
UICPA (Union Internationale de Chimie Pure et Appliquée). (1979) Méthode d'analyse des matières grasses. sixième édition. 190 pp. Lavoisier Tec et Doc, Paris (France),Google Scholar
Unal, H., Isik, E. & Alpsoy, H.C. (2006) Some physical and mechanical properties of black eyed pea (Vigna unguiculata L) grains. Pakistan Journal of Biological Science 9(9), 17971806.Google Scholar
Venugopal, K.J., Janarthanan, S. & Ignacimuthu, S. (2000) Resistance of legume seeds to the bruchid, Callosobruchus maculatus: metabolites relationship. Indian Journal of Experimental Biology 38, 471476.Google Scholar
Wolff, J.P. (1968) Manuel d'analyse des corps gras; Azoulay éd., Paris, 519 pp.Google Scholar