Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:45:29.169Z Has data issue: false hasContentIssue false

Genetic differentiation of Culex pipiens (Diptera: Culicidae) in China

Published online by Cambridge University Press:  24 May 2007

F. Cui
Affiliation:
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Graduate School, Chinese Academy of Sciences, Beijing 100080, China Institute of Evolutionary Sciences, Génétique et Environnement, Université de Montpellier II (CC 065), 34095 Montpellier 05, France
C.-L. Qiao
Affiliation:
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Graduate School, Chinese Academy of Sciences, Beijing 100080, China
B.-C. Shen
Affiliation:
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Graduate School, Chinese Academy of Sciences, Beijing 100080, China
M. Marquine
Affiliation:
Institute of Evolutionary Sciences, Génétique et Environnement, Université de Montpellier II (CC 065), 34095 Montpellier 05, France
M. Weill
Affiliation:
Institute of Evolutionary Sciences, Génétique et Environnement, Université de Montpellier II (CC 065), 34095 Montpellier 05, France
M. Raymond*
Affiliation:
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Graduate School, Chinese Academy of Sciences, Beijing 100080, China Institute of Evolutionary Sciences, Génétique et Environnement, Université de Montpellier II (CC 065), 34095 Montpellier 05, France
*
*Author for correspondence Fax: (00 33) 4 67 14 36 22 E-mail: raymond@isem.univ-montp2.fr

Abstract

The population genetic structures of Culex pipiens Linnaeus were evaluated in China over a 2000 km transect that encompasses the two subspecies, C. p. pallens and C. p. quinquefasciatus. Four polymorphic allozyme loci were investigated in 1376 mosquitoes sampled from 20 populations across four provinces. These loci were not statistically dependent with no apparent heterozygote deficit or excess. On a regional scale (intra-province), a low (Fst=0.007–0.016) and significant genetic differentiation was found, with no clear geographical pattern. On a wider scale (inter-province), the genetic differentiation was higher (Fst=0.059), and an isolation by distance emerged. The results are compared with previous population genetic surveys of this mosquito species in different geographic areas over the world. The overall pattern suggests that Culex pipiens requires considerable distance (500–1000 km) to show isolation by distance, irrespective of the subspecies (C. p. pipiens, C. p. quinquefasciatus and C. p. pallens) or the geographic location.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.F., Andreadis, T.G., Vossbrinck, C.R., Tirrell, S., Wakem, E.M., French, R.A., Garmendia, A.E. & Van Kruiningen, H.J. (1999) Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut. Science 286, 23312333.CrossRefGoogle Scholar
Ben Cheikh, H., Ben Ali-haouas, Z., Marquine, M. & Pasteur, N. (1998) Resistance to organophosphorus and pyrethroid insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia. Journal of Medical Entomology 35, 251260.CrossRefGoogle ScholarPubMed
Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. & Weill, M. (2002) High Wolbachia density in insecticide-resistant mosquitoes. Proceedings of the Royal Society of London, Series B 269, 14131416.CrossRefGoogle ScholarPubMed
Byrne, K. & Nichols, R. (1998) Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82, 715.CrossRefGoogle Scholar
Chandre, F. (1998) Resistance d'Anopheles gambiae Giles et de Culex pipiens quinquefasciatus Say aux insecticides en Afrique de l'Ouest et implications opérationnelles. Doctorat Thesis, University of Paris XII-Val de Marne.Google Scholar
Cheng, M.L., Hacker, C.S., Pryor, S.C., Ferrell, R.E. & Kitto, G.B. (1982) The ecological genetics of Culex pipiens complex in North America. pp. 581627in Steiner, W.W.M., Tabachnik, W.J., Rai, K.S. & Narang, S. (Eds) Recent developments in the genetics of insect disease vectors. Champaign, Illinois, Stipes Publishing Company.Google Scholar
Chevillon, C., Addis, G., Raymond, M. & Marchi, A. (1995a) Population structure in Mediterranean islands and risk of genetic invasion in Culex pipiens L. (Diptera: Culicidae). Biological Journal of the Linnean Society 55, 329343.CrossRefGoogle Scholar
Chevillon, C., Pasteur, N., Marquine, M., Heyse, D. & Raymond, M. (1995b) Population structure and dynamics of selected genes in the mosquito Culex pipiens. Evolution 49, 9971007.CrossRefGoogle ScholarPubMed
Chevillon, C., Eritja, R., Pasteur, N. & Raymond, M. (1995c) Commensalism, adaptation and gene flow: mosquitoes from the Culex pipiens complex in different habitats. Genetical Research 66, 147157.CrossRefGoogle ScholarPubMed
Chevillon, C., Rivet, Y., Raymond, M., Rousset, F., Smouse, P.E. & Pasteur, N. (1998) Migration/selection balance and ecotypic differentiation in the mosquito Culex pipiens. Molecular Ecology 7, 197208.CrossRefGoogle Scholar
Cui, F., Lin, L.-F., Qiao, C.-L., Xu, Y., Marquine, M., Raymond, M. & Weill, M. (2006a) Insecticide resistance in Chinese populations of the Culex pipiens complex through esterase overproduction. Entomologica Experimentalis et Applicata 120, 211220.CrossRefGoogle Scholar
Cui, F., Raymond, M. & Qiao, C.-L. (2006b) Insecticide resistance of vector mosquitoes in China. Pest Management Science 62, 10131022.CrossRefGoogle ScholarPubMed
Farid, H.A., Gad, A.M. & Spielman, A. (1991) Genetic similarity among Egyptian populations of Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology 28, 198204.CrossRefGoogle ScholarPubMed
Georghiou, G.P., Metcalf, R.L. & Gidden, F.E. (1966) Carbamate resistance in mosquitoes: selection of Culex pipiens fatigans Wied. (=Culex quinquefasciatus) for resistance to Baygon. Bulletin of the World Health Organization 35, 691708.Google Scholar
Goudet, J. (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 5, 184186.CrossRefGoogle Scholar
Goudet, J., Raymond, M., De Meeüs, T. & Rousset, F. (1996) Testing differentiation in diploid populations. Genetics 144, 19331940.CrossRefGoogle ScholarPubMed
Hayes, J. (1975) Seasonal changes in population structure of Culex pipiens quinquefasciatus Say (Diptera: culicidae): study of an isolated population. Journal of Medical Entomology 12, 167178.CrossRefGoogle ScholarPubMed
Hochberg, Y. (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800802.CrossRefGoogle Scholar
Knight, K.L. (1978) Supplement to a catalog of the mosquitoes of the world (Diptera: Culicidae). 45 pp. Thomas Say Foundation, Entomological Society of America.CrossRefGoogle Scholar
Knight, K.L. & Stone, A. (1977) A catalog of the mosquitoes of the world (Diptera: Culicidae). 2nd edn. pp. 216219. Thomas Say Foundation, Entomological Society of America.Google Scholar
Krida, G., Bouattour, A., Rodhain, F. & Failloux, A. (1998) Variability among Tunisian populations of Culex pipiens: genetic structure and susceptibility to a filarial parasite, Brugia pahangi. Parasitology Research 84, 139142.CrossRefGoogle ScholarPubMed
Leblois, R., Estoup, A. & Rousset, F. (2003) Influence of mutational and sampling factors on the estimation of demographic parameters in a ‘continuous’ population under isolation by distance. Molecular Biology and Evolution 20, 491502.CrossRefGoogle Scholar
Lenormand, T. & Raymond, M. (1998) Resistance management: the stable zone strategy. Proceedings of the Royal Society of London, Series B 265, 16.CrossRefGoogle Scholar
Lenormand, T., Guillemaud, T., Bourguet, D. & Raymond, M. (1998) Evaluating gene flow using selected markers: a case study. Genetics 149, 13831392.CrossRefGoogle ScholarPubMed
Nayar, J.K., Knight, J.W. & Munstermann, L.E. (2003) Temporal and geographical variation in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Florida. Journal of Medical Entomology 40, 882889.CrossRefGoogle ScholarPubMed
Nei, M. (1972) Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 33213323.CrossRefGoogle ScholarPubMed
Pasteur, N. (1977) Recherches de génétique chez Culex pipiens pipiens L. polymorphisme enzymatique, autogénèse et résistance aux insecticides organophosphorés. Thesis, Université des Sciences et Techniques du Languedoc, France.Google Scholar
Pasteur, N., Pasteur, G., Bonhomme, F. & Britton-Davidian, J. (1988) Practical isozyme genetics. Chichester, West Sussex, Ellis Horwood.Google Scholar
Pasteur, N., Marquine, M., Rousset, F., Failloux, A., Chevillon, C. & Raymond, M. (1995) The role of passive migration in the dispersal of resistance genes in Culex pipiens quinquefasciatus within French Polynesia. Genetical Research 66, 139146.CrossRefGoogle Scholar
Pasteur, N., Marquine, M., Huu Hoang, T., Sinh Nam, V. & Failloux, A. (2001) Overproduced esterases in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Vietnam. Journal of Medical Entomology 38, 740745.CrossRefGoogle ScholarPubMed
Qu, F.-Y. (1999) Fifty years of research on mosquitoes in China. Chinese Journal of Parasitology and Parasitic Diseases 17, 264266 (in Chinese).Google Scholar
Raymond, M. & Rousset, F. (1995a) An exact test for population differentiation. Evolution 49, 12801283.CrossRefGoogle ScholarPubMed
Raymond, M. & Rousset, F. (1995b) Genepop (version 1.2), a population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Raymond, M., Callaghan, A., Fort, P. & Pasteur, N. (1991) Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350, 151153.CrossRefGoogle ScholarPubMed
Raymond, M., Berticat, C., Weill, M., Pasteur, N. & Chevillon, C. (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112/113, 287296.CrossRefGoogle ScholarPubMed
Reisen, W.K., Milby, M.M. & Meyer, R.P. (1992) Population dynamics of adult Culex mosquitoes (Diptera: Culicidae) along the Kern River, Kern County, California, in 1990. Journal of Medical Entomology 29, 531543.CrossRefGoogle ScholarPubMed
Rousset, F. (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 12191228.CrossRefGoogle ScholarPubMed
Rousset, F. & Raymond, M. (1995) Testing heterozygote excess and deficiency. Genetics 140, 14131419.CrossRefGoogle ScholarPubMed
Silvestrini, F., Severini, C., Di Pardo, V., Romi, R., De Matthaeis, E. & Raymond, M. (1998) Population structure and dynamics of insecticide resistance genes in Culex pipiens populations from Italy. Heredity 81, 342348.CrossRefGoogle Scholar
Urbanelli, S., Cianchi, R., Petrarca, V., Sabatinelli, G., Coluzzi, M. & Bullini, L. (1981) Adaptation to the urban environment in the mosquito Culex pipiens (Diptera, Culicidae). pp. 305316in Moroni, A., Ravera, O. & Anelli, A. (Eds) Ecologia. Parma, Zara.Google Scholar
Urbanelli, S., Bullini, L. & Villani, F. (1985) Electrophoretic studies on Culex quinquefasciatus Say from Africa: genetic variability and divergence from Culex pipiens L. Bulletin of Entomological Research 75, 291304.Google Scholar
Urbanelli, S., Villani, F. & Bullini, L. (1986) Struttura genetica di Culex quinquefasciatus in Africa (Diptera, Culicidae). Annali dell'Istituto Superiore di Sanita 22, 369372.Google ScholarPubMed
Urbanelli, S., Silvestrini, F., Sabatinelli, G., Raveloarifera, F., Petrarca, V. & Bullini, L. (1995) Characterization of the Culex pipiens complex (Diptera: Culicidae) in Madagascar. Journal of Medical Entomology 32, 778786.CrossRefGoogle ScholarPubMed
Villani, F., Urbanelli, S., Gad, A., Nudelman, S. & Bullini, L. (1986) Electrophoretic variation of Culex pipiens from Egypt and Israel. Biological Journal of the Linnean Society 29, 4962.CrossRefGoogle Scholar
Weill, M., Chandre, F., Brengues, C., Manguin, C., Akogbeto, M., Pasteur, N., Guillet, P. & Raymond, M. (2000) The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Molecular Biology 9, 451455.CrossRefGoogle ScholarPubMed
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Wright, S. (1969) Evolution and the genetics of populations v. 2. The theory of gene frequencies. Chicago, Illinois, The University of Chicago Press.Google Scholar
Zhao, T. & Lu, B. (1995) Biosystematics of Culex pipiens complex in China. Entomologia Sinica 2, 18.Google Scholar
Zhao, T. & Lu, B. (1996) Hybridization of Culex pipiens complex of China. Dong Wu Fen Lei Xue Bao 21, 218223 (in Chinese).Google Scholar