Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T01:59:15.471Z Has data issue: false hasContentIssue false

Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China

Published online by Cambridge University Press:  18 February 2011

D. Chu*
Affiliation:
High-tech Research Center, Shandong Academy of Agricultural Sciences, and Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China
C.S. Gao
Affiliation:
High-tech Research Center, Shandong Academy of Agricultural Sciences, and Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China
P. De Barro
Affiliation:
CSIRO Entomology 120 Meiers Road Indooroopilly, Queensland 4068, Australia
Y.J. Zhang
Affiliation:
Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
F.H. Wan
Affiliation:
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
I.A. Khan
Affiliation:
Department of Entomology, NWFP Agricultural University Peshawar, NWFP, Pakistan
*
*Author for correspondence Fax: +86-531-83178156 E-mail: chinachudong@sina.com

Abstract

The percentage infection of secondary symbionts (SS) (Wolbachia, Arsenophonus, Rickettsia, Hamiltonella, Fritschea and Cardinium) in the exotic Bemisia tabaci (Genn.) invaders, commonly known as biotypes B and Q from China, were determined by PCR. In total, 373 biotype B and 1830 biotype Q individuals were screened for the presence of SS. Biotype B was more abundant than biotype Q from 2005 to 2006, and biotype Q was more abundant from 2007 to 2009. Each of the SS, with the exception of Fritschea, was detected in both biotypes B and Q; Fritschea was found in none of the samples examined. For biotype B, the percentage infection of Hamiltonella was the highest (92.0%) followed by Rickettsia (70.2%). For biotype Q, the percentage infection of Hamiltonella was again the highest (73.3%). Arsenophonus was the least common of the SS observed in both biotypes B and Q. The percentage infection of Wolbachia, Rickettsia and Hamiltonella in biotype B was each significantly higher than in biotype Q, whereas the percentage infection of Cardinium in biotype B was significantly lower than in biotype Q. The percentage infection of SS in biotypes B and Q varied from year to year over the period 2005–2009. Furthermore, within biotype Q, two distinct subgroups were identified which differ from each other in terms of their SS complement. We discuss these results in the light of the potentially influential factors and roles of the SS.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M.Z., Shatters, R.G., Ren, S.X., Jin, G.H., Mandour, N.S. & Qiu, B.L. (2009) Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations. Journal of Applied Entomology 133, 733741.CrossRefGoogle Scholar
Boykin, L.M., Shatters, R.G., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P.J. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution 44, 13061319.CrossRefGoogle ScholarPubMed
Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. & Ghanim, M. (2007) Biotype-dependent secondary symbiont in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research 97, 407413.CrossRefGoogle ScholarPubMed
Chu, D., Cong, B., Zhang, Y.J., Xu, B.Y., Wu, Q.J. & Zhu, G.R. (2005) Detection and phylogenetic analysis of Wolbachia in different Bemisia tabaci biotypes. Acta Entomologica Sinica 48, 518525.Google Scholar
Chu, D., Zhang, Y.J., Brown, J.K., Cong, B., Xu, B.Y., Wu, Q.J. & Zhu, G.R. (2006) The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist 89, 168174.CrossRefGoogle Scholar
Chu, D., Jiang, T., Liu, G.X., Jiang, D.F., Tao, Y.L., Fan, Z.X., Zhou, H.X. & Bi, Y.P. (2007) Biotype status and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in Shandong Province of China based on mitochondrial DNA markers. Environmental Entomology 36, 12901295.CrossRefGoogle ScholarPubMed
Chu, D., Wan, F.H., Tao, Y.L., Liu, G.X., Fan, Z.X. & Bi, Y.P. (2008) Genetic differentiation of Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q based on mitochondrial DNA markers. Insect Science 15, 115123.CrossRefGoogle Scholar
Chu, D., Zhang, Y.J. & Wan, F.H. (2010) Cryptic invasion of the exotic Bemisia tabaci biotype Q occurred widespread in Shandong Province of China. Florida Entomologist 3, 203207.CrossRefGoogle Scholar
De Barro, P.J., Driver, F., Trueman, J.W.H. & Curran, J. (2000) Phylogenetic relationship of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogenetics and Evolution 16, 2936.CrossRefGoogle ScholarPubMed
Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. & De Barro, P.J. (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America 103, 196208.CrossRefGoogle Scholar
Douglas, A.E. (1998) Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43, 1737.CrossRefGoogle ScholarPubMed
Fleury, F., Vavre, F., Ris, N., Fouillet, P. & Boulétreau, M. (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121, 493500.CrossRefGoogle ScholarPubMed
Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691.CrossRefGoogle ScholarPubMed
Ghanim, M. & Kontsedalov, S. (2009) Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Management Science 65, 939942.CrossRefGoogle Scholar
Guo, X.P. & Li, Z.X. (2008) Wolbachia extensively harbored by Bemisia tabaci in China. Acta Microbiologica Sinica 48, 6367.Google ScholarPubMed
Hariri, A.R., Werren, J.H. & Wilkinson, G.S. (1998) Distribution and reproductive effects of Wolbachia in stalk eyed flies (Diptera: Diopsidae). Heredity 81, 254260.CrossRefGoogle Scholar
Heddi, A., Grenier, A.M., Khatchadourian, C., Charles, H. & Nardon, P. (1999) Four intracellular genomes direct weevil biology: Nuclear mitochondrial principal endosymbiont and Wolbachia. Proceedings of the National Academy of Sciences of the United States of America 96, 68146819.CrossRefGoogle ScholarPubMed
Hong, Y.C., Ko, C.C. & Wang, C.H. (2005) Studies on the secondary endosymbionts of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Taiwan. Formosan Entomologist 25, 145157.Google Scholar
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225.CrossRefGoogle ScholarPubMed
Koga, R., Tsuchida, T. & Fukatsu, T. (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society, Series B: Biological Sciences 270, 25432550.CrossRefGoogle Scholar
Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M. & Ghanim, M. (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science 64, 789792.CrossRefGoogle ScholarPubMed
Leonardo, T.E. & Muiru, G.T. (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proceedings of the Royal Society, Series B: Biological Sciences 270, 209212.CrossRefGoogle ScholarPubMed
Li, Z.X., Lin, H.Z. & Guo, X.P. (2007) Prevalence of Wolbachia infection in Bemisia tabaci. Current Microbiology 54, 467471.CrossRefGoogle ScholarPubMed
Lin, H.Z. & Li, Z.X. (2008) Characteristics of Wolbachia infection in natural populations of Bemisia tabaci in Fujian Province. Acta Entomologica Sinica 51, 1419.Google Scholar
Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C. & Bandi, C. (2002) How many Wolbachia supergroups exist? Molecular Biology and Evolution 19, 341346.CrossRefGoogle ScholarPubMed
Luo, C., Yao, Y., Wang, R.J., Yan, F.M., Hu, D.X. & Zhang, Z.L. (2002) The use of mitochondrial cytochrome oxidase (mtCOI) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomologica Sinica 45, 759763.Google Scholar
Mahadav, A., Gerling, D., Gottlieb, Y., Czosnek, H. & Ganim, M. (2008) Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics 9, 342.CrossRefGoogle ScholarPubMed
McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W., Sidhu, M., Wang, Y.F. & O'Neill, S.L. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141144.CrossRefGoogle ScholarPubMed
Min, K.T. & Benzer, S. (1997) Wolbachia normally a symbiont of Drosophila can be virulent causing degeneration and early death. Proceedings of the National Academy of Sciences of the United States of America 94, 1079210796.CrossRefGoogle ScholarPubMed
Montllor, C.B., Maxmen, A. & Purcell, A.H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27, 189195.CrossRefGoogle Scholar
Muniz, M. & Nombela, G. (2001) Differential variation in development of the B- and Q biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environmental Entomology 30, 720727.CrossRefGoogle Scholar
Nauen, R., Stumpf, N. & Elbert, A. (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemipteran: Aleyrodidae). Pest Management Science 58, 868875.CrossRefGoogle Scholar
Nirgianaki, A., Banks, G.K., Rrohlich, S.R., Veneti, Z., Braig, H.R., Miller, T.A., Bedford, I.D., Markham, P.G., Savakis, C. & Bourtzis, K. (2003) Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology 47, 93101.Google ScholarPubMed
Nombela, G., Beitia, F. & Muniz, M. (2001) A differential interaction study of Bemisia tabaci Q biotype on commercial tomato varieties with or without the Mi resistance gene and comparative host responses with the B-biotype. Entomologia Experimentalis et Applicata 98, 339344.CrossRefGoogle Scholar
Oliveira, M.R.V., Henneberry, T.J. & Anderson, P. (2001) History current status and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709723.CrossRefGoogle Scholar
Oliver, K.M., Moran, N.A. & Hunter, M.S. (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America 102, 1279512800.CrossRefGoogle Scholar
Pascual, S. & Callejas, C. (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of Entomological Research 94, 369375.CrossRefGoogle ScholarPubMed
Qiu, B.L., Coats, S.A., Ren, S.X., Idris, A.M., Xu, C. & Brown, J.K. (2007) Phylogenetic relationships of native and introduced Bemisia tabaci (Homoptera: Aleyrodidae) from China and India based on mtCOI DNA sequencing and host plant comparisons. Progress in Natural Science 17, 645654.Google Scholar
Qu, Z., Cong, B., Chu, D. & Dong, H. (2009) The detection and type determination of Wolbachia based on the 16S rDNA sequences. Acta Entomologica Sinica 52, 582587.Google Scholar
Rauch, N. & Nauen, R. (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology 54, 165176.CrossRefGoogle ScholarPubMed
Ros, V.I.D., Fleming, V.M., Feil, E.J. & Breeuwer, J.A.J. (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Applied and Environmental Microbiology 75, 10361043.CrossRefGoogle Scholar
Ruan, Y.M. & Liu, S.S. (2005) Detection and phylogenetic analysis of prokaryotic endosymbionts in Bemisia tabaci. Acta Entomologica Sinica 48, 859865.Google Scholar
Ruan, Y.M., Xu, J. & Liu, S.S. (2006) Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomologia Experimentalis et Applicata 121, 159166.CrossRefGoogle Scholar
Shoemaker, D.D., Ross, K.G., Keller, L., Vargo, E.L. & Werren, J.H. (2000) Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp). Insect Molecular Biology 9, 661673.CrossRefGoogle ScholarPubMed
Silva, I.M.M.S., van Meer, M.M.M., Roskam, M.M., Hoogenboom, A., Gort, G. & Stouthamer, R. (2000) Biological control potential of Wolbachia infected (unisexual) versus uninfected (sexual) wasps: laboratory, greenhouse evaluation of Trichogramma cordubensis, T. deion strains. BioControl 10, 223238.CrossRefGoogle Scholar
Thao, M.L., Baumann, L., Hess, J.M., Falk, B.W., Ng, J.C.K., Gullan, P.J. & Baumann, P. (2003) Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae. Current Microbiology 47, 4650.CrossRefGoogle ScholarPubMed
Tsuchida, T., Koga, R. & Fukatsu, T. (2004) Host plant specialization governed by facultative symbiont. Science 303, 1989.CrossRefGoogle ScholarPubMed
Tsutsui, N.D., Kauppinen, S.N., Oyafuso, A.F. & Grosberg, R.K. (2003) The distribution, evolutionary history of Wolbachia infection in native, introduced populations of the invasive argentine ant (Linepithema humile). Molecular Ecology 12, 30573068.CrossRefGoogle ScholarPubMed
Vavre, F., Girin, C. & Boulétreau, M. (1999) Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Molecular Biology 8, 6772.CrossRefGoogle Scholar
Weeks, A.R., Velten, R. & Stouthamer, R. (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society, Series B: Biological Sciences 270, 18571865.CrossRefGoogle ScholarPubMed
Wenseleers, T., Sundström, L. & Billen, J. (2002) Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society, Series B: Biological Sciences 269, 623629.CrossRefGoogle ScholarPubMed
Werren, J.H. (1997) Biology of Wolbachia. Annual Review of Entomology 42, 587609.CrossRefGoogle ScholarPubMed
Xu, J., De Barro, P.J. & Liu, S.S. (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research 100(3), 359366.CrossRefGoogle ScholarPubMed
Zabalou, S., Riegler, M., Theodorakopoulou, M., Stauffer, C., Savakis, C. & Bourtzis, K. (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the National Academy of Sciences of the United States of America 101, 1504215045.CrossRefGoogle ScholarPubMed
Zchori-Fein, E. & Brown, J.K. (2002) Diversity of prokaryotes associated with Bemisia tabaci (Genn) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America 95, 711718.CrossRefGoogle Scholar