Skip to main content Accessibility help
×
×
Home

Functional expression of the Spodoptera exigua chitinase to examine the virtually screened inhibitor candidates

  • L. Zhang (a1), Z. Guan (a1), Z. Pan (a1), H. Ge (a2), D. Zhou (a3) (a4), J. Xu (a5) and W. Zhang (a1)...

Abstract

Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.

Copyright

Corresponding author

*Author for correspondence Phone: + 86 20 39332963 Fax: +86 20 39943515 E-mail: lsszwq@mail.sysu.edu.cn

Footnotes

Hide All

The first two authors contributed equally to this work

Footnotes

References

Hide All
Andersen, S.O. (2003) Biochemistry of Insect Cuticle. Annual Review of Entomology 24, 2959.
Arakane, Y. & Muthukrishnan, S. (2010) Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67, 201216.
Arakane, Y., Zhu, Q., Matsumiya, M., Muthukrishnan, S. & Kramer, K.J. (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochemistry & Molecular Biology 33, 631648.
Arora, N., Ahmad, T., Rajagopal, R. & Bhatnagar, R.K. (2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochemical & Biophysical Research Communications 307, 620625.
Bernard, A., Payton, M. & Radford, K.R. (2001) Protein expression in the baculovirus system. Current protocols in Neuroscience Chapter 4, Unit 4 19.
Carlini, C.R. & Grossi-De-Sá, M.F. (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40, 15151539.
Chen, L., Zhou, Y., Qu, M., Zhao, Y. & Yang, Q. (2014) Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors. Journal of Biological Chemistry 289, 17932.
Chen, L., Liu, T., Duan, Y., Lu, X. & Yang, Q. (2017) Microbial secondary metabolite, phlegmacin B1, as a novel inhibitor of insect chitinolytic enzymes. Journal of Agricultural and Food Chemistry 65, 38513857.
Fan, Y., Zhang, Y., Yang, X., Pei, X., Guo, S. & Pei, Y. (2007) Expression of a Beauveria bassiana chitinase (Bbchit1) in Escherichia coli and Pichia pastoris. Protein Expression & Purification 56, 9399.
Fan, X.J., Mi, Y.X., Ren, H., Zhang, C., Li, Y. & Xian, X.X. (2015) Cloning and functional expression of a chitinase cDNA from the apple leaf miner moth lithocolletis ringoniella. Biochemistry 80, 242250.
Fan, X.J., Yang, C., Zhang, C., Ren, H. & Zhang, J.D. (2018) Cloning, site-directed mutagenesis, and functional analysis of active residues in lymantria dispar chitinase. Applied Biochemistry and Biotechnology 184, 1224.
Fitches, E., Wilkinson, H., Bell, H., Bown, D.P., Gatehouse, J.A. & Edwards, J.P. (2004) Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochemistry and Molecular Biology 34, 10371050.
Fukamizo, T. (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Current Protein and Peptide Science 1, 105124.
Gu, Q., Xu, J. & Gu, L. (2010) Selecting diversified compounds to build a tangible library for biological and biochemical assays. Molecules 15, 50315044.
Hao, C.J., Chai, B.F., Wei, W., Yi, S. & Liang, A.H. (2005) Polyclonal antibody against Manduca sexta chitinase and detection of chitinase expressed in transgenic cotton. Biotechnology Letters 27, 97102.
Henrissat, B. & Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293(Pt 3), 781.
Hirose, T., Maita, N., Gouda, H., Koseki, J., Yamamoto, T., Sugawara, A., Nakano, H., Hirono, S., Shiomi, K. & Watanabe, T. (2013) Observation of the controlled assembly of preclick components in the in situ click chemistry generation of a chitinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America 110, 15892.
Hu, S.B., Liu, P., Ding, X.Z., Yan, L., Sun, Y.J., Zhang, Y.M., Li, W.P. & Xia, L.Q. (2009) Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Applied Microbiology & Biotechnology 82, 1157.
Kim, J.S., Choi, J.Y., Roh, J.Y., Lee, H.Y., Jang, S.S. & Je, Y.H. (2007) Production of recombinant polyhedra containing Cry1Ac fusion protein in insect cell lines. Journal of Microbiology and Biotechnology 17, 739744.
Kitts, P.A. and Possee, R.D. (1993) A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14, 810817.
Kramer, K.J. & Muthukrishnan, S. (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochemistry & Molecular Biology 27, 887.
Lehane, M.J. (1997) Peritrophic matrix structure and function. Annual Review of Entomology 42, 525.
Lertcanawanichakul, M., Wiwat, C., Bhumiratana, A. & Dean, D.H. (2004) Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. Aizawai toward Lymantria dispar larvae. Current Microbiology 48, 175181.
Liang, T.W., Chen, Y.Y., Pan, P.S. & Wang, S.L. (2014) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules 63, 8.
Liu, T., Chen, L., Zhou, Y., Jiang, X., Duan, Y. & Yang, Q. (2017) Structure, catalysis and inhibition of OfChi-h, the Lepidoptera-exclusive insect chitinase. Journal of Biological Chemistry 292, 20802088.
Luckow, V.A., Lee, S.C., Barry, G.F. & Olins, P.O. (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. Journal of Virology 67, 4566.
Lv, M. (2007) Study on chitinase inhibitors. Doctoral dissertation. Zhejiang University of Technology.
Maccari, G., Deodato, D., Fiorucci, D., Orofino, F., Truglio, G.I., Pasero, C., Martini, R., De, L.F., Docquier, J.D. & Botta, M. (2017) Design and synthesis of a novel inhibitor of T. Viride chitinase through an in silico target fishing protocol. Bioorganic & Medicinal Chemistry Letters 27, 33323336.
Merzendorfer, H. & Zimoch, L. (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology 206, 43934412.
Müller, M. (1992) Proteolysis in protein import and export: signal peptide processing in eu- and prokaryotes. Experientia 48, 118129.
Paek, A., Park, H.Y. & Jeong, S.E. (2012) Molecular cloning and functional expression of chitinase-encoding cDNA from the cabbage moth, mamestra brassicae. Molecules & Cells 33, 439.
Reynolds, S.E. & Samuels, R.I. (1996) Physiology and biochemistry of insect moulting fluid. Advances in Insect Physiology 26, 157232.
Rinaudo, M. (2007) Chitin and chitosan – properties and applications. Cheminform 38, 603632.
Sakuda, S., Isogai, A., Matsumoto, S. & Suzuki, A. (1987) Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. Journal of Antibiotics 40, 296.
Saville, G.P., Thomas, C.J., Possee, R.D. & King, L.A. (2002) Partial redistribution of the Autographa californica nucleopolyhedrovirus chitinase in virus-infected cells accompanies mutation of the carboxy-terminal KDEL ER-retention motif. Journal of General Virology 83, 685694.
Schrempf, H. (2001) Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek 79, 285289.
Shen, Z. & Jacobs-Lorena, M. (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. Journal of Biological Chemistry 273, 17665.
Shinoda, T., Kobayashi, J., Matsui, M. & Chinzei, Y. (2001) Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Insect Biochemistry & Molecular Biology 31, 521532.
Shoichet, B.K. (2011) Virtual screening of chemical libraries. Nature 432, 862.
Somers, P.J., Yao, R.C., Doolin, L.E., Mcgowan, M.J., Fukuda, D.S. & Mynderse, J.S. (1987) Method for the detection and quantitation of chitinase inhibitors in fermentation broths; isolation and insect life cycle effect of A82516. Journal of Antibiotics 40, 17511756.
Wu, W., Lin, T., Pan, L., Yu, M., Li, Z., Pang, Y. & Yang, K. (2006) Autographa californica multiple nucleopolyhedrovirus nucleocapsid assembly is interrupted upon deletion of the 38K Gene. Journal of Virology 80, 1147511485.
Wu, Q., Liu, T. & Yang, Q. (2013) Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. Insect Science 20, 147157.
Xie, J., Zhou, Z., Zhang, X., Lan, X. & Hu, H. (2006) Preliminary screening of chitinase inhibitor producing strains. Chinese Journal of Antibiotics 31, 3941.
Yan, J., Cheng, Q., Narashimhan, C.B., Li, S. & Aksoy, S. (2002) Cloning and functional expression of a fat body-specific chitinase cDNA from the tsetse fly, Glossina morsitans morsitans. Insect Biochemistry & Molecular Biology 32, 979989.
Zhang, D., Chen, J., Yao, Q., Pan, Z., Chen, J. & Zhang, W. (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Archives of Insect Biochemistry & Physiology 79, 220234.
Zheng, Y., Zheng, S., Cheng, X., Ladd, T., Lingohr, E.J., Krell, P.J., Arif, B.M., Retnakaran, A. & Feng, Q. (2002) A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana. Insect Biochemistry and Molecular Biology 32, 18131823.
Zhu, Q., Arakane, Y., Banerjee, D., Beeman, R.W., Kramer, K.J. & Muthukrishnan, S. (2008) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochemistry & Molecular Biology 38, 452466.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Zhang et al. supplementary material
Zhang et al. supplementary material Figure S1

 Word (328 KB)
328 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed