Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-21T16:17:52.432Z Has data issue: false hasContentIssue false

Effect of constant and fluctuating low temperature on the survival of Tuta absoluta pupae

Published online by Cambridge University Press:  15 December 2023

Ayomide Joseph Zannou*
Affiliation:
Laboratory of Insect Biotechnology, Department of Plant Protection, Çukurova University, 01330 Adana, Turkey
Mahmut Mete Karaca
Affiliation:
Laboratory of Insect Biotechnology, Department of Plant Protection, Çukurova University, 01330 Adana, Turkey
Kamil Karut
Affiliation:
Laboratory of Insect Biotechnology, Department of Plant Protection, Çukurova University, 01330 Adana, Turkey
*
Corresponding author: Ayomide Joseph Zannou; Email: ayomidjosephzannou@yahoo.fr

Abstract

Temperature is among the key factors impacting the establishment and spread of invasive pests. The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the major pests attacking Solanaceae plants and is known to possess overwintering capacities. However, the cold hardiness of T. absoluta pupae is poorly documented. In this study, we investigated the effect of constant temperature and stepwise cooling on T. absoluta pupae under laboratory conditions. For this purpose, bioassays on pupal development under constant temperature (5°C) for 30, 60 and 90 days, and stepwise changes in temperature (11, 10 and 8°C; in this order every 30 days), were assessed. We found that exposure to 5°C for 30 and 60 days did not affect the post-cooling emergence time of adults compared to the control. Pupae completed their development after 60 days of cold exposure at 5°C, but more adults emerged after 30 than 60 days. Even though alive pupae were observed after 90 days of cold exposure at 5°C, no adults emerged. External colours of pupae depended on the duration of cold periods, and green pupae obtained after 30 and 60 days were found to be positively correlated with the emergence of adults. When pupae were kept at 11°C for 30 days, 47% emerged, and when the temperature was changed to 10, only 12% of pupae emerged for the period 31–60 days. However, the decrease of the temperature to 8°C yielded no emergence for the period 61–90 days. Our study provides useful information to better understand the population dynamics of overwintering T. absoluta, and to underpin the development of monitoring and control strategies for the pest.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland

References

Ahmadi, F, Moharramipour, S and Mikani, A (2018) The effect of temperature and photoperiod on diapause induction in pupae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Environmental Entomology 47, 13141322.CrossRefGoogle ScholarPubMed
Arias, MB, Poupin, MJ and Lardies, MA (2011) Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: effect of temperature variability. Journal of Thermal Biology 36, 355362.CrossRefGoogle Scholar
Bale, JS and Hayward, SAL (2010) Insect overwintering in a changing climate. The Journal of Experimental Biology 213, 980994.CrossRefGoogle Scholar
Bayram, A, Ozcan, H and Kornosor, S (2005) Effect of cold storage on the performance of Telenomus busseolae Gahan (Hymenoptera: Scelionidae), an egg parasitoid of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Biological Control 35, 6877.CrossRefGoogle Scholar
Berckmoes, E, Donkers, L, Wittemans, L, Moerkens, R, Goen, K and Van Damme, V (2012) Stand van zaken Tuta absoluta op Vlaamse tomatenbedrijven: Tuta geeft wisselend schadebeeld. Pro- Eftuinnieuws 14, 2627.Google Scholar
Biondi, A, Guedes, RNC, Wan, FH and Desneux, N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annual Review of Entomology 63, 239258.CrossRefGoogle ScholarPubMed
Chen, W, Leopold, RA and Harris, MO (2008) Cold storage effects on maternal and progeny quality of Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Biological Control 46, 122132.CrossRefGoogle Scholar
Chen, ZZ, Xu, LX, Li, LL, Wu, HB and Xu, YY (2019) Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bulletin of Entomological Research 109, 212220.CrossRefGoogle ScholarPubMed
Chown, SL and Terblanche, JS (2006) Physiological diversity in insects: ecological and evolutionary contexts. Advances in Insect Physiology 33, 50152.CrossRefGoogle ScholarPubMed
Colinet, H, Sinclair, BJ, Vernon, P and Renault, D (2015) Insects in fluctuating thermal environments. Annual Review of Entomology 60, 123140.CrossRefGoogle ScholarPubMed
Cuthbertson, AGS, Mathers, JJ, Blackburn, LF, Korycinska, A, Luo, W, Jacobson, RJ and Northing, P (2013) Population development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under simulated UK glasshouse conditions. Insects 4, 185197.CrossRefGoogle ScholarPubMed
Danks, HV (2004) The roles of insect cocoons in cold conditions. European Journal of Entomology 101, 433437.CrossRefGoogle Scholar
De Campos, MR, Béarez, P, Amiens-Desneux, E, Ponti, L, Gutierrez, AP, Biondi, A, Adiga, A and Desneux, N (2021) Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. Journal of Pest Science 94, 829842.CrossRefGoogle Scholar
Denlinger, DL (2002) Regulation of diapause. Annual Review of Entomology 47, 93122.CrossRefGoogle ScholarPubMed
Desneux, N, Wajnberg, E, Wyckhuys, KAG, Burgio, G, Arpaia, S, Narvaez-Vasquez, CA, Gonzalez-Cabrera, J, Ruescas, DC, Tabone, E, Frandon, J, Pizzol, J, Poncet, C, Cabello, C and Urbaneja, A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197215.CrossRefGoogle Scholar
Dong, YC, Wang, ZJ, Clarke, AR, Pereira, R, Desneux, N and Niu, CY (2013) Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax. Journal of Pest Science 86, 429436.CrossRefGoogle Scholar
Giraudoux, P (2017) Package ‘pgirmess.’ R Package, Version 1.6.7, 63.Google Scholar
Islam, A, Islam, MS, Yasmin, M and Yamanaka, A (2019) Effect of temperature on the life cycle and pupal color of lime swallotail butterfly, Papilio demoleus (Lepidoptera: Papilionidae). International Journal of Entomology Research 4, 4247.Google Scholar
Kahrer, A, Moyses, A, Hochfellner, L, Tiefenbrunner, W, Egartner, A, Miglbauer, T, Müller, K, Reinbacher, L, Pilz, C, Votzi, J and Scheifinger, H (2019) Modelling time- varying low-temperature-induced mortality rates for pupae of Tuta absoluta (Gelechiidae: Lepidoptera). Journal of Applied Entomology 143, 11431153.CrossRefGoogle Scholar
Krechemer, F and Foerster, LA (2015) Tuta absoluta (Lepidoptera: Gelechiidae): thermal requirements and effect of temperature on development, survival, reproduction and longevity. European Journal of Entomology 112, 658663.CrossRefGoogle Scholar
, X, Han, S, Li, J, Liu, J and Li, Z (2019) Effects of cold storage on the quality of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) reared on artificial medium. Pest Management Science 75, 13281338.CrossRefGoogle ScholarPubMed
Marchioro, CA and Krechemer, FS (2023) Reconstructing the biological invasion of Tuta absoluta: evidence of niche shift and its consequences for invasion risk assessment. Journal of Pest Science, 0123456789. https://doi.org/10.1007/s10340-023-01627-3Google Scholar
Martins, JC, Picanço, MC, Bacci, L, Guedes, RNC, Santana, PA Jr, Ferreira, DO and Chediak, M (2016). Life table determination of thermal requirements of the tomato borer Tuta absoluta. Journal of Pest Science 89, 897908.CrossRefGoogle Scholar
Montini, P, De Majo, MS and Fischer, S (2021) Delayed mortality effects of cold fronts during the winter season on Aedes aegypti in a temperate region. Journal of Thermal Biology 95, 102808.CrossRefGoogle Scholar
Özder, N (2010) Effect of different cold storage periods on parasitization performance of Trichogramma cacoeciae (Hymenoptera, Trichogrammatidae) on eggs of Ephestia kuehniella (Lepidoptera, Pyralidae). Biocontrol Science and Technology 14, 441447.CrossRefGoogle Scholar
Pereyra, PC and Sánchez, NE (2006). Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 5, 671676.CrossRefGoogle Scholar
R Core Team (2017) R A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at URL.Google Scholar
Ragland, GJ and Kingsolver, JG (2008) Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution 62, 13451357.CrossRefGoogle ScholarPubMed
Santana, PA Jr, Kumar, L, Da Silva, RS and Picanço, MC (2019) Global geographic distribution of Tuta absoluta as affected by climate change. Journal of Pest Science 92, 13731385.CrossRefGoogle Scholar
Shimoda, M and Kiuchi, M (1997) Effect of chilling of diapause pupa on adult emergence in the sweet potato hornworm, Agrius convolvuli (Linné) (Lepidoptera; Sphingidae). Applied Entomology and Zoology 32, 617624.CrossRefGoogle Scholar
Teets, NM and Denlinger, DL (2013) Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiological Entomology 38, 105116.CrossRefGoogle Scholar
Turnock, WJ, Lamb, RJ and Bodnaryk, RP (1983) Effects of cold stress during pupal diapause on the survival and development of Mamestra configurata (Lepidoptera: Noctuidae). Oecologia 56, 185192.CrossRefGoogle ScholarPubMed
Van Damme, V, Berkvens, N, Moerkens, R, Berckmoes, E, Wittemans, L, De Vis, R, Casteels, H, Tirry, L and De Clercq, P (2015) Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. Journal of Pest Science 88, 533541.CrossRefGoogle Scholar
Wipking, W (1995) Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae). Oecologia 102, 202210.CrossRefGoogle ScholarPubMed
Xiao, H, Wu, S, Chen, C and Xue, F (2013) Optimal low temperature and chilling period for both summer and winter diapause development in Pieris melete: based on a similar mechanism. PLoS ONE 8, 19.Google Scholar
Yamamoto, K, Tsujimura, Y, Kometani, M, Kitazawa, C, Taher, A, Islam, ATMF and Yamanaka, A (2011) Diapause pupal color diphenism induced by temperature and humidity conditions in Byasa alcinous (Lepidoptera: Papilionidae). Journal of Insect Physiology 57, 930934.CrossRefGoogle ScholarPubMed
Yamanaka, A, Imai, H, Adachi, M, Komatsu, M, Islam, ATMF, Kodama, I, Kitazawa, C and Endo, K (2004) Hormonal control of the orange coloration of diapause pupae in the swallowtail butterfly, Papilio xuthus L. (Lepidoptera: Papilionidae). Zoological Science 21, 10491055.CrossRefGoogle ScholarPubMed
Zhao, L, Xu, X, Xu, Z, Liu, Y and Sun, S (2014) Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera: Eulophidae). Journal of Insect Science 14, 15.CrossRefGoogle ScholarPubMed