Skip to main content Accessibility help

Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference

  • X. Chen (a1), H. Tian (a1), L. Zou (a1), B. Tang (a1), J. Hu (a1) and W. Zhang (a1)...


RNA interference (RNAi) is a powerful tool for rapidly analyzing gene functions. However, little is known about the possible use of dsRNA/siRNA as a pest control method. Here, we demonstrate that dsRNA/siRNA can induce the silence of chitin synthase gene A (CHSA), which is an important gene for the growth and development of cuticles and trachea in beet armyworm, Spodoptera exigua. Based on the in vitro RNAi experiments in an insect cell line (Trichoplusia ni High 5), in vivo RNAi was performed by injecting synthesized dsRNA/siRNA into the 4th instar larvae of S. exigua. Significantly lower levels of CHSA transcripts were detected. In addition, the cuticle of these insects was disordered and the epithelial walls of larval trachea did not expand uniformly in injected individuals. Moreover, Injections significantly increased abnormalities relative to control larvae. These results highlighted the possibility of dsRNA/siRNA for gene function studies in lepidopteran insects and future pest control.


Corresponding author

*Author for correspondence Fax: +86 20 84112297 E-mail:


Hide All
Agrawal, N., Malhotra, P. & Bhatnagar, R.K. (2004) siRNA-directed silencing of transgene expressed in cultured insect cells. Biochemical Biophysical Research Communications 320, 428434.
Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M. & Beeman, R.W. (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology 14, 453463.
Araujo, S.J., Aslam, H., Tear, G. & Casanova, J. (2005) Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development-analysis of its role in Drosophila tracheal morphogenesis. Developmental Biology 288, 179193.
Baum, J., Bogaert, T., Clinton, W., Heck, G., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. & Roberts, J. (2007) Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25, 13221326.
Bettencourt, R., Terenius, O. & Faye, I. (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Molecular Biology 11, 267271.
Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of the National Academy Sciences USA 98, 97429747.
Chen, X., Yang, X., Senthil Kumar, N., Tang, B., Sun, X., Qiu, X., Hu, J. & Zhang, W. (2007) The class A chitin synthase gene of Spodoptera exigua: molecular cloning and expression patterns. Insect Biochemistry and Molecular Biology 37, 409417.
Clemens, J., Worby, C., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. & Dixon, J. (2001) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy Sciences USA 97, 64996503.
Coutinho, P.M. & Henrissat, B. (1999) Life with no sugars? Journal of Molecular Microbiology and Biotechnology 1, 307308.
Cruz, J., Mane-Padros, D., Belles, X. & Martin, D. (2006) Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Developmental Biology 297, 158171.
Eleftherianos, I., Marokhazi, J., Millichap, P.J., Hodgkinson, A.J., Sriboonlert, A., ffrench-Constant, R.H. & Reynolds, S.E. (2006a) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochemistry and Molecular Biology 36, 517525.
Eleftherianos, I., Millichap, P.J., ffrench-Constant, R.H. & Reynolds, S.E. (2006b) RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental and Comparative Immunology 30, 10991107.
Eleftherianos, I., Gokcen, F., Felfoldi, G., Millichap, P.J., Trenczek, T.E., ffrench-Constant, R.H. & Reynolds, S.E. (2007) The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell Microbiology 9, 11371147.
Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293296.
Lum, L., Yao, S., Mozer, B., Rovescalli, A., Von Kessler, D., Nirenberg, M. & Beachy, P.A. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 20392045.
Mao, Y., Cai, W., Wang, J., Hong, G., Tao, X., Wang, L., Huang, Y. & Chen, X. (2007) Silencing a cotton bollworm P450 monooxy genase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology 25, 13071313.
Meyering-Vos, M., Merz, S., Sertkol, M. & Hoffmann, K.H. (2006) Functional analysis of the allatostatin-A type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. Insect Biochemistry and Molecular Biology 36, 492504.
Quan, G.X., Kanda, T. & Tamura, T. (2002) Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Molecular Biology 11, 217222.
Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P. & Bhatnagar, R.K. (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. Journal of Biological Chemistry 277, 4684946851.
Rajagopal, R., Thamilarasi, K., Venkatesh, G.R., Srinivas, P. & Bhatnagar, R.K. (2005) Immune cascade of Spodoptera litura: cloning, expression, and characterization of inducible prophenol oxidase. Biochemical Biophysical Research Communications 337, 394400.
Tomoyasu, Y. & Denell, R.E. (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution 214, 575578.
Vermehren, A., Qazi, S. & Trimmer, B.A. (2001) The nicotinic alpha subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neuroscience Letters 313, 113116.
Zhou, X., Oi, F.M. & Scharf, M.E. (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proceedings of the National Academy of Sciences of the United States of America 103, 44994504.
Zimoch, L. & Merzendorfer, H. (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Research 308, 287297.


Related content

Powered by UNSILO

Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference

  • X. Chen (a1), H. Tian (a1), L. Zou (a1), B. Tang (a1), J. Hu (a1) and W. Zhang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.