Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T15:39:34.763Z Has data issue: false hasContentIssue false

Cloning of three epsilon-class glutathione S-transferase genes from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid

Published online by Cambridge University Press:  08 February 2024

Ling Zhang
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
Huizhen Tu
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
Fang Tang*
Affiliation:
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
*
Corresponding author: Fang Tang; Email: tangfang76@sohu.com

Abstract

Micromelalopha troglodyta (Graeser) is an important pest of poplar in China, and glutathione S-transferase (GST) is an important detoxifying enzyme in M. troglodyta. In this paper, three full-length GST genes from M. troglodyta were cloned and identified. These GST genes all belonged to the epsilon class (MtGSTe1, MtGSTe2, and MtGSTe3). Furthermore, the expression of these three MtGSTe genes in different tissues, including midguts and fat bodies, and the MtGSTe expression in association with different concentrations of tannic acid, including 0.001, 0.01, 0.1, 1, and 10 mg ml−1, were analysed in detail. The results showed that the expression levels of MtGSTe1, MtGSTe2, and MtGSTe3 were all the highest in the fourth instar larvae; the expression levels of MtGSTe1 and MtGSTe3 were the highest in fat bodies, while the expression level of MtGSTe2 was the highest in midguts. Furthermore, the expression of MtGSTe mRNA was induced by tannic acid in M. troglodyta. These studies were helpful to clarify the interaction between plant secondary substances and herbivorous insects at a deep level and provided a theoretical foundation for controlling M. troglodyta.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Both authors contributed equally to this study.

References

Armstrong, RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research in Toxicology 10, 218.Google Scholar
Arrese, EL and Soulages, JL (2010) Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55, 207225.Google Scholar
Aultman, KS, Gottlieb, M, Giovanni, MY and Fauci, AS (2002) Anopheles gambiae genome: completing the malaria triad. Science (New York, N.Y.) 298, 1313.Google Scholar
Board, PG, Baker, RT, Chelvanayagam, G and Jermiin, LS (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochemical Journal 328, 929935.Google Scholar
Chelvanayagam, G, Parker, MW and Board, PG (2001) Fly fishing for GSTs: aunified nomenclature for mammalian and insect glutathione transferases. Chemico–Biological Interactions 133, 256260.Google Scholar
Chen, FJ and Gao, XW (2005) Gene structure and expression regulation of glutathione S transferase genes in insects. Acta Entomologica Sinica 48, 600608.Google Scholar
Chen, YZ, Zhang, BW, Yang, J, Zou, CS, Li, T, Zhang, GC and Chen, GS (2021) Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of Lymantria dispar larvae under carvacrol. Journal of Asia-Pacific Entomology 24, 208216.Google Scholar
Cheng, HP, Tang, F, Li, W and Xu, M (2015) Tannic acid induction of a glutathione S-transferase in Micromelalopha troglodyta (Lepidoptera: Notodontidae) larvae. Journal of Entomological Science 50, 350362.Google Scholar
Clark, AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology 92, 419446.Google Scholar
Corcuera, LJ (1984) Effects of indole alkaloids from gramineae on aphids. Phytochemistry 23, 539541.Google Scholar
Corcuera, LJ (1993) Biochemical basis for the resistance of barley to aphids. Phytochemistry 33, 741747.CrossRefGoogle Scholar
Deng, HM, Huang, YF, Feng, QL and Zheng, SC (2009) Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: characterization and developmental and induced expression by insecticides. Journal of Insect Physiology 55, 11741183.Google Scholar
Després, L, David, JP and Gallet, C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution 22, 298307.Google Scholar
Ding, YC, Ortelli, F, Rossiter, LC, Hemingway, J and Ranson, H (2003) The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 4, 35.Google Scholar
Duffey, SS and Stout, MJ (1996) Antinutritive and toxic components of plant defense against insects. Archives of Insect Biochemistry and Physiology 32, 337.Google Scholar
Enayati, A, Ranson, H and Hemingway, J (2005) Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14, 38.Google Scholar
Fournier, D, Bride, JM, Poire, M, Berge, JB and Plapp, FW (1992) Insect glutathione S-transferases: biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. Journal of Biological Chemistry 267, 18401845.Google Scholar
Giulietti, A, Overbergh, L, Valckx, D, Decallonne, B, Bouillon, R and Mathieu, C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods (San Diego, CA) 25, 386401.Google Scholar
Habig, WH, Pabst, MJ and Jakoby, WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 73107319.Google Scholar
Hemingway, J (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology 30, 10091015.Google Scholar
Holt, RA and Chaturvedi, K (2003) The genome sequence of the malaria mosquito Anopheles gambiae. Science (New York, N.Y.) 300, 20332033.Google Scholar
Hu, F, Dou, W, Wang, JJ, Jia, FX and Wang, JJ (2014) Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis. Pest Management Science 70, 295303.CrossRefGoogle ScholarPubMed
Huang, HS, Hu, NT, Yao, YE, Wu, CY, Chiang, SW and Sun, CN (1998) Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology 28, 651658.Google Scholar
Huang, YF, Xu, ZB, Lin, XY, Feng, QL and Zheng, SC (2011) Structure and expression of glutathione S-transferase genes from the midgut of the common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria. Journal of Insect Physiology 57, 10331044.Google Scholar
Listowsky, I, Abramovitz, M, Homma, H and Niitsu, Y (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione S-transferase. Drug Metabolism Reviews 19, 305318.Google Scholar
Liu, S, Rao, XJ, Li, MY, Feng, MF, He, MZ and Li, SG (2015) Glutathione S-transferase genes in the rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae): identification and expression profiles. Archives of Insect Biochemistry and Physiology 90, 113.Google Scholar
Liu, S, Zhang, YX, Wang, WL, Zhang, BX and Li, SG (2017) Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae. Pesticide Biochemistry and Physiology 143, 102110.Google Scholar
Ma, JY, Sun, LL, Zhao, HY, Wang, ZY, Zou, L and Cao, CW (2021) Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. Pesticide Biochemistry and Physiology 176, 104860.Google Scholar
Morel, F, Rauch, C, Petit, E, Piton, A, Theret, N, Coles, B and Guillouzo, A (2004) Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. Journal of Biological Chemistry 279, 1624616253.Google Scholar
Ranson, H, Rossiter, L, Ortelli, F, Jensen, B, Wang, XL, Roth, CW, Collins, FH and Hemingway, J (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal 359, 295304.Google Scholar
Ranson, H, Claudianos, C, Ortelli, F, Abgrall, C, Hemingway, J, Sharakhova, MV, Unger, MF, Collins, FH and Feyereisen, R (2002) Evolution of supergene families associated with insecticide resistance. Science (New York, N.Y.) 298, 179181.Google Scholar
Rushmore, TH and Pickett, CB (1993) Glutathione S-transferases, structure, regulation, and therapeutic implications. Journal of Biological Chemistry 268, 1147511478.Google Scholar
Saitou, N and Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sheehan, D, Meade, G, Foley, VM and Dowd, CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal 360, 116.Google Scholar
Sun, LL, Yin, JJ, Du, H, Liu, P and Cao, CW (2020) Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Pesticide Biochemistry and Physiology 163, 254262.Google Scholar
Tang, AH and Tu, CPD (1995) Peniobarbital-induced changes in Drosophila glutathione S-transferases D21 mRNA stability. Journal of Biological Chemistry 270, 1381913825.Google Scholar
Tang, F, Tu, HZ, Shang, QL, Gao, XW and Liang, P (2020) Molecular cloning and characterization of five glutathione S-transferase genes and promoters from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid stress. Insects 11, 339.CrossRefGoogle ScholarPubMed
Yang, J, Sun, XQ, Yan, SY, Pan, WJ, Zhang, MX and Cai, QN (2017) Interaction of ferulic acid with glutathione S-transferase and carboxylesterase genes in the brown planthopper, Nilaparvata lugens. Journal of Chemical Ecology 43, 693702.Google Scholar
Yang, J, Kong, XD, Zhu-Salzman, K, Qin, QM and Cai, QN (2021) The key glutathione S-transferase family genes involved in the detoxification of rice gramine in brown planthopper Nilaparvata lugens. Insects 12, 1055.Google Scholar
Zhang, MX, Fang, TT, Pu, GL, Sun, XQ, Zhou, XG and Cai, QN (2013) Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pesticide Biochemistry and Physiology 107, 4449.CrossRefGoogle ScholarPubMed