Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T17:21:30.688Z Has data issue: false hasContentIssue false

Assessing common bean genotypes for resistance to Diabrotica speciosa (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  19 June 2023

Eduardo Neves Costa*
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Agrárias, Programa de Pós-graduação em Agronomia, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil, Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil
Elias Soares Gomes
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil
Lucas Coutinho Reis
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Agrárias, Programa de Pós-graduação em Agronomia, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil,
Andressa Caroline Foresti
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Agrárias, Programa de Pós-graduação em Agronomia, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil,
Silvana de Paula Quintão Scalon
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Agrárias, Programa de Pós-graduação em Agronomia, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil,
Marcos Gino Fernandes
Affiliation:
Universidade Federal da Grande Dourados, Faculdade de Ciências Agrárias, Programa de Pós-graduação em Agronomia, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil, Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Rodovia Dourados/Itahum, Km 12, 79.804-970, Dourados, MS, Brazil
*
Corresponding author: Eduardo Neves Costa; Email: costa_ne@yahoo.com.br

Abstract

Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae) is a major pest of common bean (Phaseolus vulgaris L.; Fabales: Fabaceae), and adults can defoliate plants during the whole crop cycle. This study was conducted to evaluate the resistance to D. speciosa in 16 common bean genotypes (14 landraces and 2 cultivars), through three different experiments. In the laboratory, choice and no-choice feeding tests were performed to evaluate the percentage of leaf consumption. In the greenhouse, plant height, numbers of leaves, percentage of injured leaves, percentage of injury per leaf, weight of seeds, and D. speciosa survival were evaluated. Furthermore, trichome density, levels of peroxidase (POD), superoxide dismutase (SOD), and protein content in common bean leaves were assessed. In the laboratory, the genotypes Chumbinho Branco, Dobalde, Manteigado, IPR Tuiuiú, and 90D Mouro were the least consumed by D. speciosa. In the greenhouse, the genotypes Dobalde, Manteigado, and IPR Tuiuiú expressed tolerance to the pest, which was associated with a higher plant height and/or unchanged POD and SOD levels and protein content following insect feeding, and no reduction in seed production. The landrace 90D Mouro exhibited antixenosis and tolerance to D. speciosa, observed as a lower leaf injury, higher trichome density, lower protein contents, higher SOD level and no reduction in seed weight. Overall, we have shown that antixenosis and tolerance can help overcome damages resulting from D. speciosa feeding, with emphasis on four common bean genotypes that may be useful in plant breeding programs aimed at controlling D. speciosa in common bean crops.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ávila, CJ, Tabai, ACP and Parra, JR (2000) Comparação de técnicas para criação de Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae) em dietas natural e artificial. Anais da Sociedade Entomológica do Brasil 29, 257267.CrossRefGoogle Scholar
Bloomer, RH, Lloyd, AM and Symonds, VV (2014) The genetic architecture of constitutive and induced trichome density in two new recombinant inbred line populations of Arabidopsis thaliana: phenotypic plasticity, epistasis, and bidirectional leaf damage response. BMC Plant Biology 14, 114.CrossRefGoogle ScholarPubMed
Boiça Júnior, AL, Costa, EN, Souza, BHS, Ribeiro, ZA and Carbonell, SAM (2015) Antixenosis and tolerance to Diabrotica speciosa (Coleoptera: Chrysomelidae) in common bean cultivars. Florida Entomologist 98, 464472.CrossRefGoogle Scholar
Borém, A and Miranda, GV (2013) Melhoramento de plantas. Viçosa: UFV.Google Scholar
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Broetto, F (2014) Métodos de trabalho em bioquímica vegetal e tecnologia de enzimas. Botucatu: Instituto de Biociências.Google Scholar
Cabrera Walsh, G, Ávila, CJ, Cabrera, N, Nava, DE, Pinto, AS and Weber, DC (2020) Biology and management of pest Diabrotica species in South America. Insects 11, 118.CrossRefGoogle ScholarPubMed
CAPS (2020) 2020 Priority Pest List: Commodity and Taxonomic Surveys. Indiana: West Lafayette.Google Scholar
Carneiro, E, Kafer, JM, Gobatto, DR, Fedrigo, K, Andrade, GS, Vargas, TO and Finatto, T (2022) Morphogenetic analysis of common bean genotypes in response to Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae). Arthropod-Plant Interactions 16, 477493.Google Scholar
Carović-Stanko, K, Liber, L, Vidak, M, Barešić, A, Grdiša, M, Lazarević, B and Šatović, Z (2017) Genetic diversity of Croatian common bean landraces. Frontiers in Plant Science 8, 18.CrossRefGoogle ScholarPubMed
Chen, MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Science 15, 101114.CrossRefGoogle Scholar
Corrado, G and Rao, R (2017) Towards the genomic basis of local adaptation in landraces. Diversity 9, 112.CrossRefGoogle Scholar
Costa, EN, Martins, LO, Reis, LC, Fernandes, MG and Scalon, SPQ (2020) Resistance of cowpea genotypes to Spodoptera frugiperda (Lepidoptera: Noctuidae) and its relationship to resistance-related enzymes. Journal of Economic Entomology 113, 25212529.CrossRefGoogle ScholarPubMed
Duncan, DB (1955) Multi range and multi F tests. Biometrics 11, 142.CrossRefGoogle Scholar
Dunn, OJ (1964) Multiple comparisons using rank sums. Technometrics 6, 241252.CrossRefGoogle Scholar
Han, Y, Wang, Y, Bi, JL, Yang, XQ, Huang, Y, Zhao, X, Hu, Y and Cai, QN (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of Chemical Ecology 35, 176182.CrossRefGoogle ScholarPubMed
Kamfwa, K, Cichy, KA and Kelly, JD (2015) Genome-wide association study of agronomic traits in common bean. The Plant Genome 8, 112.CrossRefGoogle ScholarPubMed
Kogan, M and Ortman, EF (1978) Antixenosis – a new term proposed to define Painter's “nonpreference” modality of resistance. Bulletin of the Entomological Society of America 24, 175176.CrossRefGoogle Scholar
Kruskal, WH and Wallis, WA (1952) Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 583621.CrossRefGoogle Scholar
Levene, H (1960) Robust tests for equality of variances. Contributions to probability and statistics. In Olkin, I, Ghurye, SG, Hoeffding, W, Madow, WG and Mann, HB (eds), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Palo Alto: Stanford University Press, pp. 278292.Google Scholar
Machado, BB, Orue, JPM, Arruda, MS, Santos, CV, Sarath, DS, Gonçalves, WN, Silva, GG, Pistori, H, Roel, AR and Rodrigues, JF Jr. (2016) BioLeaf: a professional mobile application to measure foliar damage caused by insect herbivory. Computers and Electronics in Agriculture 129, 4455.CrossRefGoogle Scholar
Mallick, N and Mohn, FH (2000) Reactive oxygen species: response of algal cells. Journal of Plant Physiology 157, 183193.CrossRefGoogle Scholar
Medina, LB, Trecha, CO and Da Rosa, APSA (2013) Bioecologia de Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae) visando fornecer subsídios para estudos de criação em dieta artificial. Pelotas: Embrapa Clima Temperado.Google Scholar
Moses, LE (2014) Wilcoxon-Mann-Whitney Test: Definition and Example. Hoboken, Wiley StatsRef: Statistics Reference, 16.Google Scholar
Oliveira, MGC, Oliveira, LFC, Wendland, A, Guimarães, CM, Quintela, ED, Barbosa, FR, Carvalho, MCS, Lobo Junior, M and Silveira, PM (2018) Conhecendo a fenologia do feijoeiro e seus aspectos fitotécnicos. Brasília: Embrapa Arroz e Feijão.Google Scholar
Ozturk, I, Kara, M, Yildiz, C and Ercisli, S (2009) Physico-mechanical seed properties of the common Turkish bean (Phaseolus vulgaris) cultivars ‘Hinis’ and ‘Ispir’. New Zealand Journal of Crop and Horticultural Science 37, 4150.CrossRefGoogle Scholar
Painter, RH (1951) Insect Resistance in Crop Plants. New York: MacMillan.CrossRefGoogle Scholar
Paron, MJDO and Lara, FM (2001) Preferência alimentar de adultos de Diabrotica speciosa (Ger.) (Coleoptera: Chrysomelidae) por genótipos de feijoeiro. Neotropical Entomology 30, 669674.CrossRefGoogle Scholar
Paron, MJFO and Lara, FM (2005) Relação entre tricomas foliares de genótipos de feijoeiro comum, Phaseolus vulgaris L. e resistência a Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae). Ciência e Agrotecnologia 29, 894898.CrossRefGoogle Scholar
R Development Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Salas, FJS and Bueno, TN (2019) Larva alfinete, o desafio do manejo. Revista Batata Show 54, 2628.Google Scholar
Salazar-Magallon, JA, Hernandez-Velazquez, VM, Alvear-Garcia, A, Arenas-Sosa, I and Pena-Chora, G (2015) Evaluation of industrial by-products for the production of Bacillus thuringiensis strain GP139 and the pathogenicity when applied to Bemisia tabaci nymphs. Bulletin of Insectology 68, 103109.Google Scholar
SAS Institute (2003) Version 9.0 [Computer Program]. Cary, USA: SAS Institute.Google Scholar
Shapiro, SS and Wilk, MB (1965) An analysis of variance test for Normality (complete samples). Biometrika 52, 591611.CrossRefGoogle Scholar
Smith, CM (2005) Plant Resistance to Arthropods: Molecular and Conventional Approaches. Dordrecht: Springer.CrossRefGoogle Scholar
Smith, CM and Clement, SL (2012) Molecular bases of plant resistance to arthropods. Annual Review of Entomology 57, 309328.CrossRefGoogle ScholarPubMed
Tukey, JW (1949) Comparing individual means in the analysis of variance. Biometrics 5, 99114.CrossRefGoogle ScholarPubMed
Vellau, H, Sandre, SL and Tammaru, T (2013) Effect of host species on larval growth differs between instars: the case of a geometrid moth (Lepidoptera: Geometridae). European Journal of Entomology 110, 599604.CrossRefGoogle Scholar
War, AR, Paulraj, MG, Ahmad, T, Buhroo, AA, Hussain, B, Ignacimuthu, S and Sharma, HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7, 13061320.CrossRefGoogle ScholarPubMed
Zacheo, G and Bleve-Zacheo, T (1988) Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack. Physiological and Molecular Plant Pathology 32, 313322.CrossRefGoogle Scholar