Hostname: page-component-68945f75b7-6sdl9 Total loading time: 0 Render date: 2024-09-02T20:17:37.727Z Has data issue: false hasContentIssue false

Demographic analysis and biotic potential of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on pea

Published online by Cambridge University Press:  27 August 2024

Shubham Sharma
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
Prem Lal Sharma
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
Prajjval Sharma*
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
Subhash Chander Verma
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
Nidhi Sharma
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
Priyanka Sharma
Affiliation:
Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, HP 173230, India
*
Corresponding author: Prajjval Sharma; Email: sharmaprajjval@gmail.com

Abstract

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a highly destructive polyphagous pest that primarily damages maize. Maize is considered a most versatile crop for growing intercrops due to the wide row it needs. Maize–pea intercropping is preferred by small and marginal farmers worldwide due to various advantages including higher yield and improved economic benefits. However, the success of this intercropping system may be hampered if pea could sustain the FAW population. Thus, to clarify the fitness and potential effect of S. frugiperda on pea, we analysed the survival and development of S. frugiperda fed on pea leaves in the laboratory and constructed age-stage and two-sex life tables. Results showed that FAW successfully completed its life cycle when fed on pea and produced fertile offspring. The pre-adult duration was significantly higher on pea than maize. The net reproductive rate, intrinsic and finite rate of population increase on pea (135.06 offspring per individual, 0.12 offspring per individual per day and 1.13 times per day) were all significantly different from those on maize (417.64 offspring per individual, 0.19 offspring per individual per day and 1.21 times per day). The probability of survival of S. frugiperda at each stage was lower when fed on pea leaves than that of maize-fed larvae. Due to the overlapping growth periods of the maize and pea, S. frugiperda can easily proliferate throughout the year by shifting between adjacent crops. Thus, this study revealed the adaptability of S. frugiperda for pea and provides the foundation for further assessment of FAW risk to other inter-crops.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, R, Malekera, MJ, Dhungana, SK, Sharma, SR and Lee, KY (2022) Impact of rice and potato host plants is higher on the reproduction than growth of corn strain fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 13, 256.CrossRefGoogle ScholarPubMed
Aulakh, G (2020) Studies on intercropping of maize (Zea mays L.) with pea (Pisum sativum L.) genotype. Indian Journal of Ecology 46, 354357.Google Scholar
Barros, EM, Torres, JB, Ruberson, JR and Oliveira, MD (2010) Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomologia Experimentalis et Applicata 137, 237245.CrossRefGoogle Scholar
Casmuz, A, Juarez, ML, Socias, MG, Murua, MG, Prieto, S, Medina, S and Gastaminza, WE (2010) Revision de loshospederos del gusanocogollero del maiz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de La Sociedad Entomologica Argentina 69, 209231.Google Scholar
Chen, Y, Guo, J, Gao, Z, He, K, Bai, S, Zhang, T and Wang, Z (2020) Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on six host plants: potential risks to mid-high latitude crops in China. Journal of Agricultural Science 12, 16.CrossRefGoogle Scholar
Chen, YC, Chen, DF, Yang, MF and Liu, JF (2022) The effect of temperatures and hosts on the life cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 13, 211.CrossRefGoogle ScholarPubMed
Chi, H (2022a) Timing-MS Chart: Computer Program for Population Projection Based on Age-Stage, Two-Sex Life Table. Taichung, Taiwan: National Chung Hsing University, http://140.120.197.173/Ecology/ Accessed 20 October 2023.Google Scholar
Chi, H (2022b) TWOSEX-MS Chart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Taichung, Taiwan: National Chung Hsing University, http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip Accessed 20 October 2023.Google Scholar
Davidson-Lowe, E, Ray, S, Murrell, E, Kaye, J and Ali, JG (2021) Cover crop soil legacies alter phytochemistry and resistance to fall armyworm (Lepidoptera: Noctuidae) in maize. Environmental Entomology 50, 958967.CrossRefGoogle ScholarPubMed
El-Shennawy, RM, Sabra, IM and Kandil, MAA (2022) Biology and growth index of fall army armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on different host plants. Asian Journal of Advances in Research 5, 904912.Google Scholar
Goergen, G, Kumar, PL, Sankung, SB, Togola, A and Tamo, M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 11, e0165632.CrossRefGoogle Scholar
He, LM, Wang, TL, Chen, YC, Ge, SS, Wyckhuys, KAG and Wu, KM (2021) Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture 20, 736744.CrossRefGoogle Scholar
Huang, H-W, Chi, H and Smith, CL (2017) Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. Journal of Economic Entomology 111, 19.Google Scholar
Li-Hong, W, Cao, Z, Gui-Yun, L, Xi-Bin, Y, Zhi-Yan, W, Hong, L and Chao-Xing, Y (2021) Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. Journal of Integrative Agriculture 20, 755763.Google Scholar
Liu, YQ, Wang, XQ and Zhong, YW (2019) Fall armyworm Spodoptera frugiperda feeding on cabbage in Zhejiang. Plant Protection 45, 9091.Google Scholar
Maruthadurai, R and Ramesh, R (2020) Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 48, 1523.CrossRefGoogle Scholar
Montezano, DG, Specht, A and Bbarros, NM (2014) Immature stages of the armyworm, Spodoptera eridania: developmental parameters and host plants. Journal of Insect Science 238, 111.Google Scholar
Montezano, DG, Specht, A, Sosa-Gomez, DR, Roque-Specht, VF, Sousa-Silva, JC, Paula-Moraes, SV, Peterson, JA and Hunt, J (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26, 286300.CrossRefGoogle Scholar
Moraes, T, Ferreira Da Silva, A, Leite, N, Karam, D and Mendes, S (2020) Survival and development of Fall Armyworm (Lepidoptera: Noctuidae) in weeds during the off-season. Florida Entomologist 103, 288292.CrossRefGoogle Scholar
Nestel, D, Papadopoulos, NT, Pascacio-Villafan, C, Righini, N, Altuzar-Molina, AR and Aluja, M (2016) Resource allocation and compensation during development in holometabolous insects. Journal of Insect Physiology 95, 7888.CrossRefGoogle ScholarPubMed
Ormeño, E and Fernandez, C (2012) Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Current Bioactive Compounds 8, 7179.Google ScholarPubMed
Ormeño, E, Goldstein, A and Niinemets, Ü (2011) Extracting and trapping biogenic volatile organic compounds stored in plant species. Trends in Analytical Chemistry: TRAC 30, 978989.CrossRefGoogle Scholar
Qi, XW, Hong, L, Chen, J and Liang, YY (2024) Fitness and cold tolerance of Spodoptera frugiperda fed on corn and two winter crops. Journal of Applied Entomology 148, 4956.CrossRefGoogle Scholar
Rwomushana, I (2019) Spodoptera frugiperda (fall armyworm). Invasive Species Compendium, CABI. https://doi.org/10.1079/ISC.29810.20203373913CrossRefGoogle Scholar
Salgado, AL and Saastamoinen, M (2019) Developmental stage-dependent response and preference for host plant quality in an insect herbivore. Animal Behaviour 150, 2738.CrossRefGoogle Scholar
Sangomla, A and Kukreti, I (2023) Fall armyworm attack: the damage done. Available at https://www.downtoearth.org.in/coverage/agriculture/fall-armyworm-attack-the-damage-done-63445Google Scholar
Sharanabasappa, , Kalleshwaraswamy, CM, Asokan, R, Mahadeva, , Swamv, HMM, Maruthi, MS, Pavithra, HB, Hegde, K, Navi, S, Prabhu, ST and Goergen, G (2018) First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems 24, 2329.Google Scholar
Specht, A and Roque-Specht, VF (2016) Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): developmental parameters and host plants. Zoologia 33, e20160053. https://doi.org/10.1590/s1984-4689zool-20160053CrossRefGoogle Scholar
Tai, HK, Guo, JF, Yang, SC, Zhang, F, Liu, J, Yang, YQ, Song, M, Xia, YG, He, K, Lin, QX and Wang, ZY (2019) Biological characteristics and damage symptoms of fall armyworm, Spodoptera frugiperda, on sugarcane in Dehong preference of Yunnan Province. Plant Protection 45, 7579.Google Scholar
Tietz, HM (1972) An index to the described life histories, early stages and hosts of the macro Lepidoptera of the continental United States and Canada. Journal of the New York Entomological Society 81, 120121.Google Scholar
Vatanparast, M and Park, Y (2022) Cold tolerance strategies of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Scientific Reports 12, 4129.CrossRefGoogle ScholarPubMed
Wang, W, He, P, Zhang, Y, Liu, T, Jing, X and Zhang, S (2020) The population growth of Spodoptera frugiperda on six cash crop species and implications for its occurrence and damage potential in China. Insects 11, 639. https://doi.org/10.3390/insects11090639CrossRefGoogle ScholarPubMed
Wu, F, Zhang, L, Liu, Y, Cheng, Y, Su, J, Sappington, TW and Jiang, X (2022) Population development, fecundity, and flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on three green manure crops: implications for an ecologically based pest management approach in China. Journal of Economic Entomology 115, 124132.CrossRefGoogle ScholarPubMed
Zhang, DD, Zhao, S, Wu, QL, Li, Y and Wu, KM (2021) Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China. Journal of Integrative Agriculture 20, 764771.CrossRefGoogle Scholar
Zhou, SC, Li, SB, Su, RR, Wang, XY, Zheng, XL and Lu, W (2020) Preliminary report on the damage of Spodoptera frugiperda on Maranta arundinacea in Guangxi. Plant Protection 46, 209211.Google Scholar
Zhou, S, Qin, Y, Wang, X, Zheng, X and Lu, W (2022) Fitness of the fall armyworm Spodoptera frugiperda to a new host plant, banana (Musa nana Lour.). Chemical and Biological Technologies in Agriculture 9, 78. https://doi.org/10.1186/s40538-022-00341-zCrossRefGoogle Scholar
Zou, CH and Yang, JJ (2019) Spodoptera frugiperda harms Coix. China Plant Protection 39, 47.Google Scholar