Hostname: page-component-6d856f89d9-vrt8f Total loading time: 0 Render date: 2024-07-16T07:52:22.406Z Has data issue: false hasContentIssue false

Postnatal intestinal development

Published online by Cambridge University Press:  27 February 2018

D. Kelly
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
R. Begbie
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
T. P. King
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Get access

Abstract

Early postnatal intestinal development involves the preparation of the intestinal epithelium for extrauterine life when maternal secretions provide the sole nutrient source. A further shift in the digestive capability of the epithelium occurs later in development with the introduction of complex solid foods. Ontogenesis involves extensive epithelial cell proliferation and cytodifferentiation including changes in the expression of enzymes, receptors and transport systems and is regulated through the interaction of endogenous and exogenous factors. The mucosal epithelium plays a key rôle in the reception and transmisson of these trophic signals. In particular, the interplay between dietary constituents and microvillar membranes exerts profound influence on intestinal development and adaptation during the postnatal period.

Type
Research Article
Copyright
Copyright © British Society of Animal Production 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, D. R. and Rodewald, R. 1981. Evidence for the sorting of endocytic vesicle contents during the receptor mediated transport of IgG across the newborn intestine. Journal of Cell Biology 91: 270280.Google Scholar
Abrams, G. C., Bauer, H. and Sprinz, H. 1963. Influence of normal flora on mucosal morphology and cellular renewal in ileum. Laboratory Investigation 12: 355364.Google Scholar
Adegbola, R. A. and Old, D. C. 1982. New fimbrial hemagglutinin in Serratia species. Infection and Immunity 38: 306315.Google Scholar
Adegbola, R. A. and Old, D. C. 1983. Fimbrial haemagglutinins in Enterobacter species. Journal of General Microbiology 129: 21752180.Google Scholar
Atisook, K. and Madara, J. L. 1991. An oligopeptide permeates intestinal tight junctions at glucose-elicited dilations: implications for oligopeptide absorption. Gastroenterology 100: 719724.Google Scholar
Auricchio, S. and Sebastio, G. 1989. Development of disaccharidases. In Human gastrointestinal development (ed. Lebenthal, E.), pp. 451469. Raven Press, New York.Google Scholar
Bailey, C. B., Kitts, W. D. and Wood, A. J. 1956. The development of the digestive enzyme system of the pig during the pre-weaning phase of growth. Canadian Journal of Agricultural Science 36: 5158.Google Scholar
Baintner, K. 1986. Intestinal absorption of macromolecules and immune transmision from mother to young. CRC Press, Boca Raton, Florida.Google Scholar
Begbie, R. and King, T. P. 1985. The interaction of dietary lectin with porcine small intestine and the production of lectin-specific antibodies. In Lectins, vol. 4. (ed. Bog-Hansen, T. C. and Breborowicz, J.), pp. 1527. Walter de Gruyter, Berlin.Google Scholar
Bijlsma, I. G. W., De Nijs, A., Van der Meer, C. and Frik, J. F. 1982. Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac or K88ad antigen. Infection and Immunity 37: 891894.Google Scholar
Biol, M., Martin, A., Louisot, P. and Richard, M. 1987. Structure and metabolism of glycoproteins: nutritional regulation. World Review of Nutrition and Diet 50: 122185.Google Scholar
Biol., M., Pintori, S., Mathian, B. and Louisot, P. 1991. Dietary regulation of intestinal glycosyl-transferase activities: relation between developmental changes and weaning in rats. Journal of Nutrition 121: 114125.Google Scholar
Bouziges, F., Simon-Assmann, P., Simo, P. and Kedinger, M. 1991. Changes in glycosaminoglycan expression in the rat developing intestine. Cell Biology International Reports 15: 97106.Google Scholar
Brinton, C. C. 1959. Non-flagellar appendages of bacteria. Nature, London 183: 782786.Google Scholar
Brinton, C. C. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram-negative bacteria. Transactions of the New York Academy of Sciences 27: 10031053.Google Scholar
Buller, H. A., Rings, E. H. H. M., Montogomery, R. K., Sasak, W. V. and Grand, R. J. 1989. Further studies of glycosylation and intracellular transport of lactasephlorizin hydrolase in rat small intestine. Biochemical Journal 263: 249254.Google Scholar
Buller, H. A., Rings, E. H. H. M., Pajkrt, D., Montogomery, R. K. and Grand, R. J. 1990. Glycosylation of lactasephlorizin hydrolase in rat small intestine during development. Gastroenterology 98: 667675.Google Scholar
Burton, K. A. and Smith, M. W. 1977. Endocytosis and immunoglobulin transport across the small intestine of the new-born pig. Journal of Physiology 270: 473488.Google Scholar
Buts, J. P. and De Meyer, R. 1981. The small bowel: cellular growth, adaptation and tropic factors. Acta Paediatrica Belgica 34: 5771.Google Scholar
Buts, J. P., Keyser, N. D. and Dive, C. 1988. Intestinal development in the suckling rat: effect of insulin on the maturation of villus and crypt cell functions. European Journal of Clinical Investigation 18: 391398.CrossRefGoogle ScholarPubMed
Cera, K. R., Mahan, D. C. and Cross, R. F. 1988. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science 66: 574584.Google Scholar
Clarke, R. M. 1975. Diet, mucosal architecture and epithelial cell production in the small intestine of specified-pathogen-free and conventional rats. Laboratory Animals 9: 201209.Google Scholar
Conway, P. L., Welin, A. and Cohen, P. S. 1990. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infection and Immunity 58: 31783182.Google Scholar
Corps, A. N. and Brown, K. D. 1987. Stimulation of intestinal epithelial cell proliferation in culture by growth factors in human and ruminant mammary secretions. Journal of Endocrinology 113: 285290.Google Scholar
Corring, T. 1980. The adaptation of digestive enzymes to the diet: its physiological significance. Reproduction Nutrition Développement 20: 12171235.Google Scholar
Corring, T., Aumaitre, A. and Durand, G. 1978. Development of digestive enzymes in the piglet from birth to 8 weeks. Nutrition and Metabolism 22: 231243.Google Scholar
Danielsen, E. M. and Cowell, G. M. 1985. Biosynthesis of intestinal microvillar proteins. The intracellular transport of aminopeptidase N and sucrase-isomaltase occurs at different rates pre-Golgi but at the same rate post-Golgi. Federation of European Biochemical Societies 190: 6972.Google Scholar
Danielsen, E. M., Cowell, G. M., Noren, O. and Sjostrom, H. 1987. Biosynthesis. In Mammalian etcoenzymes (ed. Kenny, J. and Turner, A. J.), pp. 4785. Elsevier Science Publishers B.V. Google Scholar
Dean, E. A. 1990. Comparison of receptors for 987P pili of enterotoxigenic Escherichia coli in the small intestines of neonatal and older pigs. Infection and Immunity 58: 40304035.Google Scholar
Dean, E. A., Whipp, S. C. and Moon, H. W. 1989. Agespecific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli . Infection and Immunity 57: 8287.Google Scholar
Defize, L. H. K., Arndt-Jovin, D. J., Jovin, T. M., Boonstra, J., Meisenhelder, J., Hunter, T., De Hey, H. T. and De Laat, S. W. 1988. A431 cell variants lacking the blood group A antigen display increased high affinity epidermal growth factor receptor number, protein-tyrosine kinase activity and receptor turnover. Journal of Cell Biology 107: 939949.CrossRefGoogle ScholarPubMed
Deprez, P., Deroose, P., Van den Hende, C., Muylle, E. and Oyaert, T. 1987. Liquid versus dry feeding in weaned piglets: the influence on small intestinal morphology. Journal of Veterinary Medicine B 34: 254259.CrossRefGoogle ScholarPubMed
Doell, R. G. and Kretchmer, N. 1962. Studies on the small intestine during development. Distribution and activity of β-galactosidase. Biochemica Biophysica Acta 62: 353362.CrossRefGoogle ScholarPubMed
Dufour, C., Dandrifose, G., Forget, F., Vermesse, F., Romain, N. and Lepoint, P. 1988. Spermine and spermidine induced intestinal maturation in the rat. Gastroenterology 95: 112116.Google Scholar
Duguid, J. P., Clegg, S. and Wilson, M. I. 1979. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli . Journal of Medical Microbiology 12: 213227.CrossRefGoogle ScholarPubMed
Duguid, J. P. and Old, D. C. 1980. Adhesive properties of Enterobacteriaeceae . Receptors and Recognition Series B 6: 187217.Google Scholar
Fadheela, T. A., Abumrad, N. and Ghishan, F. K. 1990. Developmental changes in glutamine transport by rat jejunal basolateral membrane vesicles. Proceedings of the Society for Experimental Biology and Medicine 194: 186192 Google Scholar
Faltova, E., Hahn, P. and Koldovsky, O. 1962. Glucose absorption from the small intestine and its endocrine regulation during postnatal development. Fiziologicheskii Zhurnal SSSR imeni IM Sechenova 48: T941T944.Google Scholar
Faris, A., Lindahl, M. and Wadstrom, T. 1980 GM2-like glycoconjugate as possible erythrocyte receptor for the CFA/I and K99 haemagglutinins of enterotoxigenic Escherichia coli . FEMS Microbiology Letters 7: 265269.Google Scholar
Feizi, T. 1988. Carbohydrate structures as oncodevelopmental antigens and components of receptor systems. In The molecular immunobiology of complex carbohydrates (ed. Wu, A. M. and Adams, L. G.), pp. 317329. Plenum Press, New York.Google Scholar
Feizi, T. and Childs, R. A. 1987. Carbohydrates as antigenic determinants of glycoproteins. Biochemical Journal 245: 111.Google Scholar
Ferguson, A., Gerskowitch, V. P. and Russel, R. I. 1973. Pre- and post-weaning disaccharidase patterns in isografts of fetal mouse intestine. Gastroenterology 64: 292297.Google Scholar
Foltzer-Jourdainne, C., Kedinger, M. and Raul, F. 1989. Perinatal expression of brush border hydrolases in the rat colon: hormonal and tissue regulations. American Journal of Physiology 257: G496G503.Google ScholarPubMed
Foucard, T. 1985. Development of food allergies with special reference to cow's milk allergy. Pediatrics 75: 177181.Google Scholar
Fuller, R. 1986. Priobiotics. Journal of Applied Bacteriology 66: 365378.Google Scholar
Gaastra, W. and Graaf, F. K. de. 1982. Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiological Reviews 46: 129161.Google Scholar
Goldman, A. S., Anderson, D. W. and Sellars, W. A. 1963. Oral challenge with milk and isolated milk proteins in allergic children. Pediatrics 32: 425443.Google Scholar
Gonnella, P. A., Harmatz, P. and Walker, W. A. 1989. Prolactin is transported across the epithelium of the jejunum and ileum of the suckling rat. Journal of Cellular Physiology 140: 138149.Google Scholar
Gonnella, P. A., Siminoski, K., Murphy, R. A. and Neutra, M. R. 1987. Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum. Journal of Clinical Investigation 80: 2232.Google Scholar
Goodlad, R. A., Lenton, W., Ghatel, M. A., Adrian, T. E., Bloom, S. R. and Wright, N. A. 1987. Effects of elemental diet, inert bulk and different types of dietary fibre on the response of the intestinal epithelium to refeeding in the rat and a relationship to plasma gastrin and enteroglucagon and PYY concentrations. Gut 28: 171180.Google Scholar
Goodlad, R. A. and Wright, N. A. 1990a. Changes in intestinal cell proliferation, absorptive capacity and structure in young, adult and old rats. Journal of Anatomy 173: 109118.Google Scholar
Goodlad, R. A. and Wright, N. A. 1990b. Growth control factors in the gastrointestinal tract. Bailliere's Clinical Gastroenterology 4: 97118.Google Scholar
Haffen, H., Kedinger, M. and Lacroix, B. 1986. Cytodifferentiation of the intestinal villus epithelium. In Molecular and cellular basis of digestion (ed. Desnuelle, P., Sjostrom, H. and Noren, O.), pp. 303314. Elsevier Science Publishers B.V. Google Scholar
Haffen, H., Kedinger, M. and Simon-Assmann, P. 1989. Cell contact dependent regulation of enterocyte differentiation. In Human gastrointestinal development (ed. Lebenthal, E.), pp. 1939. Raven Press, New York.Google Scholar
Hampson, D. J. and Fu, Z. F. 1988. Pre-weaning supplementary feed and porcine post-weaning diarrhoea. Research in Veterinary Science 44: 309314.Google Scholar
Hampson, D. J. and Kidder, D. E. 1986. Influence of creep feeding and weaning on brush border enzyme activities in the piglet small intestine. Research in Veterinary Science 40: 2431.Google Scholar
Han, V. K. M., D'Ercole, A. J. and Lund, P. K. 1987. Cellular localisation of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science, Washington 236: 193197.Google Scholar
Hasegawa, H., Nakamura, A., Watanabe, K., Brown, W. R. and Nagura, H. 1987. Intestinal uptake of IgG in suckling rats: distinction between jejunal and ileal epithelial cells demonstrated by simultaneous ultrastructural localisation of IgG and acid phosphatase. Gastroenterology 92: 186191.CrossRefGoogle ScholarPubMed
Healy, P. J. 1984. Lysosomal enzymes in the intestine of the newborn lamb. Biology of the Neonate 46: 186191.Google Scholar
Healy, P. J. and Dinsdale, D. 1979. Protein transmission in the intestine of the newborn lamb: the involvement of acid and alkaline phosphatase activity. Histochemical Journal 11: 289298.Google Scholar
Henning, S. J. 1978. Permissive role of thyroxine in the ontogeny of jejunal sucrase. Endocrinology 102: 915.Google Scholar
Henning, S. J. 1981. Postnatal development: coordination of feeding, digestion and metabolism. American Journal of Physiology 241: G199G214.Google Scholar
Henning, S. J. 1987. Functional development of the gastrointestinal tract. In Physiology of the gastrointestinal tract (ed. Johnson, L.), pp. 285300. Raven Press, New York.Google Scholar
Jaeger, L. A., Lamar, C. H., Bottoms, G. D. and Cline, T. R. 1987. Growth stimulating substances in porcine milk. American Journal of Veterinary Research 48: 15311533.Google Scholar
Jaeger, L. A., Lamar, C. H., Cline, T. R. and Cardona, B. A. 1990. Effect of orally administered epidermal growth factor on the jejunal mucosa of weaned pigs. American Journal of Veterinary Research 51: 471474.Google Scholar
James, P. S., Smith, M. W., Trivey, D. R. and Wilson, T. J. G. 1987. Epidermal growth factor selectively increases maltase and sucrase activities in neonatal small intestine. Journal of Physiology 393: 583594.Google Scholar
Johnson, L. R. 1988. Regulation of gastrointestinal mucosal growth. Physiological Reviews 68: 456502.Google Scholar
Kearns, M. J. and Gibbons, R. A. 1979. The possible nature of the pig intestinal receptor for the K88 antigen of Escherichia coli . FEMS Microbiology Letters 6: 165168.Google Scholar
Kelly, D., Begbie, R. and King, T. P. 1991a. Sialylation and fucosylation of intestinal membrane glycoproteins in neonatal pigs. Proceedings of the 1st World Congress of Cellular and Molecular Biology In Press.Google Scholar
Kelly, D. and King, T. P. 1991. The influence of lactation products on the temporal expression of histoblood group antigens in the intestines of suckling pigs: lectin histochemical and immunochemical analysis. Histochemical Journal 23: 5560.Google Scholar
Kelly, D., King, T. P., Brown, D. S. and McFadyen, M. 1991b. Polyamine profiles of porcine milk and of intestinal tissue of pigs during suckling. Reproduction Nutrition Développement 31: 7380.Google Scholar
Kelly, D., King, T. P., McFadyen, M. and Travis, A. J. 1991c. Effect of lactation on the decline of brush border lactase activity in neonatal pigs. Gut 32: 386392.Google Scholar
Kelly, D., O'Brien, J. J. and McCracken, K. J. 1990a. Effect of creep feeding on the incidence, duration and severity of post-weaning diarrhoea. Research in Veterinary Science 49: 223228.Google Scholar
Kelly, D., Smyth, J. A. and McCracken, K. J. 1990b. Effect of creep feeding on structural and functional changes of the gut of early weaned pigs. Research in Veterinary Science 48: 350356.Google Scholar
Kelly, D., Smyth, J. A. and McCracken, K. J. 1991d. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. British Journal of Nutrition 65: 169180.Google Scholar
Kelly, D., Symth, J. A. and McCracken, K. J. 1991e. Digestive development of the early-weaned pig. 2. Effect of level of food intake on digestive enzyme activity during the immediate post-weaning period. British Journal of Nutrition 65: 181188.Google Scholar
Kelly, D., McFadyen, M., King, T. P. and Morgan, P. J. 1992. Characterisation and autoradiographical localisation of the Epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reproduction, Fertility and Development. In press.Google Scholar
Kenworthy, R. and Allen, W. D. 1966. Influence of diet and bacteria on small intestinal morphology with special reference to early-weaning and E. coli. Studies on germ-free and gnotobiotic pigs. Journal of Comparative Pathology 76: 291296.Google Scholar
Kenworthy, R. and Crabb, W. E. 1963. The intestinal flora of young pigs and reference to early-weaning, E. coli, and scours. Journal of Comparative Pathology 73: 215228.Google Scholar
Kim, Y. S., Morita, A., Miura, S. and Siddiqui, B. 1984. Structure of glycoconjugates of intestinal mucosal membranes: role in bacterial adherence. In Attachment of organisms to the gut mucosa. Vol. 2. (ed. Boedecker, E.), pp. 99109. CRC Press, Boca Raton, Florida.Google Scholar
King, T. P., Begbie, R. and Cadenhead, A. 1983. Nutritional toxicity of raw kidney beans in pigs: immunocytochemical and cytopathological studies on the gut and pancreas. Journal of the Science of Food and Agriculture 34: 14041412.Google Scholar
King, T. P. and Kelly, D. 1990. Lectin and antibody affinity cytochemistry of intestinal goblet cells in suckling pigs. Transactions of the Royal Microscopical Society 1: 649652.Google Scholar
King, T. P. and Kelly, D. 1991. Ontogenic expression of histo-blood group antigens in the intestines of suckling pigs; lectin histochemical and immunohistochemical analysis. Histochemical Journal 23: 4354.Google Scholar
King, I. S., Paterson, J. Y. F., Peacock, M. A., Smith, M. W. and Syme, G. 1983. Effect of diet upon enterocyte differentiation in the rat jejunum. Journal of Physiology 344: 465481.Google Scholar
King, T. P., Pusztai, A. and Clarke, E. M. W. 1980. Immunocytochemical localization of ingested kidney bean. (Phaseolus vulgaris) lectins in rat gut. Histochemical Journal 12: 201208.Google Scholar
King, T. P., Pusztai, A., Grant, G. and Slater, D. 1986. Immunogold localization of ingested kidney bean (Phaseolus vulgaris) lectins in epithelial cells of the rat small intestine. Histochemical Journal 18: 413420.Google Scholar
King, I. S., Sepulveda, F. V. and Smith, M. W. 1981. Cellular distribution of neutral and basic amino acid transport systems in rabbit ileal mucosa. Journal of Physiology 319: 355368.Google Scholar
Kingsley, D. M., Kozarsky, K. F., Hobbie, L. and Krieger, M. 1986. Reversible defects in O-linked glycosylation and LDL-receptor expression in a UDP-Gal/UDP-GalNac4-epimerase deficient mutant. Cell 44: 749759.Google Scholar
Koldovsky, O. 1980. Hormones in milk. Life Science 26: 18331836.Google Scholar
Korhonen, T. K., Leffler, H. and Svanborg Eden, C. 1981. Binding specificity of piliated strains from Escherichia coli and Salmonella typhimurium to epithelial cells, Saccharomyces cerevisiae cells and erythrocytes. Infection and Immunity 32: 796804.Google Scholar
Laburthe, M., Rouyer-Fessard, C. and Gammeltoft, S. 1988. Receptors for insulin-like growth factors I and II in the gastrointestinal epithelium. American Journal of Physiology 254: G457G462.Google Scholar
Lebenthal, E. 1989. Concepts in gastrointestinal development. In Human gastrointestinal development (ed. Lebenthal, E.), pp. 339. Raven Press, New York.Google Scholar
Lindahl, M. and Wadstrom, T. 1983. Terminal N-acetyl galactosamine and sialic acid residues are recognised by the K99 surface hemagglutinin of enterotoxigenic E. coli . IRCS Medical Science Section 11: 790.Google Scholar
Luk, G. D., Marton, L. J. and Baylin, S. B. 1980. Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science, Washington 210: 195198.Google Scholar
Lund, P. K., Moats-Staats, B., Hynes, M. A., Simmons, J. G., Jansen, M., D'Ercole, A. J. and Van Wyk, J. J. 1986. Somatomedin-C insulin-like growth factor I and insulin-like growth factor II mRNAs in fetal rat and adult tissue. Journal of Biological Chemistry 262: 1453914544.Google Scholar
McCracken, K. J. 1984. Effect of diet composition on digestive development of early-weaned pigs. Proceedings of the Nutrition Society 43: 109A (abstr.).Google Scholar
Madara, J. L., Barenberg, D. and Carlson, S. 1986. Effects of cytocholasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. Journal of Cell Biology 102: 21252136.Google Scholar
Madara, J. L. and Trier, J. S. 1987. Functional morphology of the mucosa of the small intestine. In Physiology of the gastrointestinal tract. 2nd ed. (ed. Johnson, L. R.), pp. 12091249. Raven Press, New York.Google Scholar
Mahmood, A. and Torres-Pinedo, R. 1983. Postnatal changes in lectin binding to microvillar membranes from rat intestine. Biochemical and Biophysical Research Communications 113: 400405.Google Scholar
Mahmood, A. and Torres-Pinedo, R. 1985. Effect of hormone administration on the sialylation and fucosylation of intestinal microvillus membranes of suckling rats. Pediatric Research 19: 899902.Google Scholar
Malo, C. and Menard, D. 1982. Influence of epidermal growth factor on the development of suckling mouse intestinal mucosa. Gastroenterology 83: 2835.Google Scholar
Manners, M. J. and Stevens, J. A. 1972. Changes from birth to maturity in the pattern of distribution of lactase and sucrase activity in the mucosa of the small intestine of pigs. British Journal of Nutrition 28: 113127.Google Scholar
Martin, G. R. and Henning, S. J. 1984. Enzymic development of the small intestine: are glucocorticoids necessary? American Journal of Physiology 246: G695G699.Google Scholar
Matthews, D. M. 1991. Amino acid transport systems in the brush border membrane. In Protein absorption, development and present state of the subject (ed. Matthews, D. M.), pp. 151233. Wiley-Liss.Google Scholar
Menard, D., Arsenault, P. and Pothier, P. 1988. Biologic effects of epidermal growth factor in human fetal jejunum. Gastroenterology 94: 656663.Google Scholar
Miller, B. G., James, P. S., Smith, M. W. and Bourne, F. J. 1986. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. Journal of Agricultural Science, Cambridge 107: 579589.Google Scholar
Miller, B. G., Newby, T. J., Stokes, C. R. and Bourne, F. J. 1984. Influence of diet on post-weaning malabsorption and diarrhoea in the pig. Research in Veterinary Science 36: 187193.Google Scholar
Moon, H. W. and Joel, D. D. 1975. Epithelial cell migration in the small intestine of sheep and calves. American Journal of Veterinary Research 36: 187189.Google Scholar
Moon, H. W. and Runnels, P. L. 1984. The K99 adherence system in cattle. In Attachment of microorganisms to the gut mucosa. Vol. 1 (ed. Boedeker, E. C.), pp. 3237. CRC Press, Boca Ranton, Florida.Google Scholar
Mouricout, M., Petit, J. M., Carias, J. R. and Julien, R. 1990. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infection and Immunity 58: 98106.Google Scholar
Muramatsu, T., Takasu, O., Furuse, M., Takaski, I. and Okumura, J. 1987. Influence of the gut microflora on protein synthesis in tissues and in the whole body of chicks. Biochemical Journal 246: 475479.Google Scholar
Nsi-Emvo, E., Launay, J. F. and Raul, F. 1987. Is adult-type hypolactasia in the intestine of mammals related to changes in the intracellular processing of lactase? Cellular and Molecular Biology 33: 335344.Google Scholar
Old, D. C., Adegbola, R. and Scott, S. S. 1983. Multiple fimbrial hemagglutinins in Serratia species. Medical Microbiology and Immunology 172: 107115.Google Scholar
Parker, D. S. and Armstrong, D. G. 1987. Antibiotic feed additives and livestock production. Proceedings of the Nutrition Society 46: 415421.Google Scholar
Podskalny, J., McElduff, A. and Gorden, P. 1984. Insulin receptors on Chinese hamster ovary (CHO) cells: altered insulin binding to glycosylation mutants. Biochemical and Biophysical Research Communications 125: 7075.Google Scholar
Pruzzo, C., Debbia, E. and Sata, G. 1982. Mannoseinhibitable adhesins and T3-T7 receptors of Klebsiella pneumoniae inhibit phagocytosis and intracellular binding by human polymorphonuclear leukocytes. Infection and Immunity 36: 949957.CrossRefGoogle ScholarPubMed
Pusztai, A., Grant, G., King, T. P. and Clarke, E. M. W. 1990. Chemical probiosis. In Recent advances in animal nutrition — 1990 (ed. Haresign, W., and Cole, D. J. A.), pp. 4760. Butterworths, London.Google Scholar
Reddy, B. S. and Wostmann, B. A. 1966. Intestinal disaccharidase activities in the growing germ-free and conventional rats. Archives of Biochemistry and Biophysics 113: 609616.Google Scholar
Rodewald, R. 1980. Distribution of immunoglobulin G receptors in the small intestine of the young rat. Journal of Cell Biology 85: 1832.Google Scholar
Runnels, P. L., Moon, H. W. and Schneider, R. A. 1980. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells. Infection and Immunity 28: 298300.Google Scholar
Salit, I. E. and Gotschlich, E. C. 1977. Haemagglutination by type 1 Escherichia coli pili. Journal of Experimental Medicine 146: 11691181.Google Scholar
Sanguansermsri, J., Gyorgy, P. and Zilliken, F. 1974. Polyamines in human and cow's milk. American Journal of Clinical Nutrition 27: 859865.Google Scholar
Savage, D. C., Dubos, R. and Schaedler, R. W. 1968. The gastrointestinal epithelium and its autochthonous bacterial flora. Journal of Experimental Medicine 127: 6776.Google Scholar
Sellwood, R. 1979. Escherichia coli diarrhoea in pigs with or without the K88 receptor. Veterinary Record 105: 228230.Google Scholar
Shirazi-Beechey, S. P., Kemp, R. B., Dyer, J. and Beechey, R. B. 1989. Changes in the functions of intestinal brush border membrane during the development of the ruminant habits in lambs. Comparative Biochemistry and Physiology 94: 801806.Google Scholar
Siminoski, K., Gonnella, P., Bernanke, J., Owen, L. and Neutra, M. 1986. Uptake and transepithelial transport of nerve growth factor in suckling rat ileum. Journal of Cell Biology 103: 19791990.CrossRefGoogle ScholarPubMed
Sissons, J. W. 1989. Potential probiotic organisms to prevent diarrhoea and promote digestion in farm animals — a review. Journal of the Science of Food and Agriculture 49: 113.Google Scholar
Smith, M. W. 1984. Effect of postnatal development and weaning upon the capacity of pig intestinal villi to transport alanine. Journal of Agricultural Science, Cambridge 102: 625633.Google Scholar
Smith, M. W. 1985. Expression of digestive and absorptive function in differentiating enterocytes. Annual Review of Physiology 47: 247260.Google Scholar
Smith, M. W. 1988. Post-natal development of transport function in the pig intestine. Comparative Biochemistry and Physiology 90a: 577582.Google Scholar
Svendsen, L. S., Westrom, B. R., Svendsen, J., Ohlsson, B. G., Ekman, R. and Karlsson, B. W. 1986. Insulin involvement in intestinal macromolecular transmission and closure in neonatal pigs. Journal of Pediatric Gastroenterology and Nutrition 5: 299304.Google Scholar
Taatjes, D. J. and Roth, J. 1990. Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development: demonstration with lectin-gold techniques. European Journal of Cell Biology 53: 255266.Google Scholar
Termanini, B., Nardi, R. V., Finan, T. M., Parikh, I. and Korman, L. Y. 1990. Insulin-like growth factor receptors in rabbit gastrointestinal tract. Gastroenterology 99: 5160.Google Scholar
Thompson, J. F. 1988. Specific receptors for epidermal growth factor in the rat intestinal microvillus membranes. American Journal of Physiology 254: G429G435.Google Scholar
Thornburg, W., Matrisian, L., Magan, B. and Koldovsky, O. 1984. Gastrointestinal absorption of epidermal growth factor in suckling rats. American Journal of Physiology 246: G80G85.Google Scholar
Torres-Pinedo, R. and Mahmood, A. 1984. Postnatal changes in biosynthesis of microvillar membrane glycans of rat small intestine: evidence of a developmental shift from terminal sialylation to fucosylation. Biochemical and Biophysical Research Communications 125: 546553.Google Scholar
Toyoda, S., Lee, P. and Lebenthal, E. 1986. Interaction of epidermal growth factor with specific binding sites of enterocytes isolated from small intestine during development. Biochemica et Biophysica Acta 886: 295301.Google Scholar
Trahair, J. F. and Robinson, P. M. 1986. Perinatal development of the small intestine of the sheep. Reproduction Nutrition Développement 26: 12551263.Google Scholar
Trahair, J. F. and Robinson, P. M. 1989. Enterocyte ultrastructure and uptake of immunoglobulins in the small intestine of the neonatal lamb. Journal of Anatomy 166: 103111.Google Scholar
Vellenga, L., Mouwen, J. M. V. M., Van Dijk, J. E. and Breukink, H. J. 1985. Biological and pathological aspects of the mammalian small intestinal permeability to macromolecules. Veterinary Quarterly 7: 322332.Google Scholar
Weaver, L. T., Laker, M. F., Nelson, R. and Lucas, A. 1987. Milk feeding and changes in intestinal permeability and morphology in the newborn. Journal of Pediatric Gastroenterology and Nutrition 6: 351358.Google Scholar
Weaver, L. T. and Walker, W. A. 1989. Uptake of macromolecules in the neonate. In Human gastrointestinal development (ed. Lebenthal, E.), pp. 731748. Raven Press, New York.Google Scholar
Westrom, B. R., Ekman, R., Svendsen, L., Svendsen, J. and Karlsson, B. W. 1987. Levels of immunoreactive insulin, neurotensin and bombesin in porcine colostrum and milk. Journal of Pediatric Gastroenterology and Nutrition 6: 460465.Google Scholar
Widdowson, E. 1976. Neonatal nutrition. In Gastroinestinal development and neonatal nutrition (ed. Sunshine, P.), pp. 1419. Ross Laboratories, Columbus, Ohio.Google Scholar
Widdowson, E. 1984. Milk and the newborn animal. Proceedings of the Nutrition Society 43: 87100.Google Scholar
Williamson, R. C. N. 1978. Intestinal adaptation. Structural, functional and cytokinetic studies. New England Journal of Medicine 298: 13931402.CrossRefGoogle Scholar
Wilson, A. B., King, T. P., Clarke, E. M. W. and Pusztai, A. 1980. Kidney bean (Phaseolus vulgaris) lectin induced lesions in rat small intestine. 2. Microbiological studies. Journal of Comparative Pathology 90: 597602.Google Scholar
Yeh, K. Y. and Moog, F. 1974. Intestinal lactase activity in the suckling rat: influence of hypophysectomy and thyroidectomy. Science, Washington 183: 7779.Google Scholar
Yeh, K. Y., Yeh, M. and Holt, P. R. 1989. Differential effects of thyroxine and cortisone on jejunal sucrase expression in suckling rats. American Journal of Physiology 256: G604G612.Google Scholar
Yeh, K. Y., Yeh, M. and Holt, P. R. 1991a. Thyroxine and cortisone cooperate to modulate postnatal intestinal enzyme differentiation in the rat. American Journal of Physiology 260: G371G378.Google Scholar
Yeh, K. Y., Yeh, M. and Holt, P. R. 1991b. Intestinal lactase expression and epithelial cell transit in hormone-treated suckling rats. American Journal of Physiology 260: G379384.Google Scholar
Yokata, H. and Coates, M. E. 1982. The uptake of nutrients from the small intestine of gnotobiotic and conventional chicks. British Journal of Nutrition 47: 349356.Google Scholar
Young, G. P., Morton, C. I., Rose, I. S., Taranto, T. M. and Bhathal, P. S. 1987. Effects of intestinal adaptation on insulin binding to villus cell membranes. Gut 28: 5762.Google Scholar
Young, G. P., Taranto, T. M., Jonas, H. A., Cox, A. J., Hogg, A. and Werther, G. A. 1990. Insulin-like growth factors and the developing and mature rat small intestine: receptors and biological actions. Digestion 46: 240252.Google Scholar
Younoszai, M. K. 1974. Jejunal absorption of hexose in infants and children. Journal of Pediatrics 85: 446448.Google Scholar