Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T22:04:00.440Z Has data issue: false hasContentIssue false

Cumulative gas production: how to measure it, and what it can and cannot tell you

Published online by Cambridge University Press:  27 February 2018

Barbara A. Williams*
Affiliation:
Animal Nutrition Group, Wageningen University, The Netherlands
Get access

Summary

The three most important factors describing the nutritive value of ruminant feeds are: feed intake, rumen fermentation, and enzymatic digestion. Animal experiments are usually expensive and time-consuming, so many in vitro techniques have been developed which are supposed to assist in the prediction of nutritive value, usually of rumen fermentation. One of these is the measurement of gas production from the substrate when incubated with a specific inoculum. The cumulative gas production technique measures gas at regular intervals in time, as an indicator of the kinetics of fermentation. The resultant cumulative gas profiles, fitted to specific equations, and in combination with other end-products (i.e. VFA and NH3) can indicate both the rate and extent of fermentability of the test substrates. This information can be used to compare substrates with each other. However, the fact that the technique has not yet been standardized, and that inoculum varies according to time and place, means that comparison both between runs and locations, can be very difficult. Also, there are a number of aspects of the technique which will always mean that its resemblance to the in vivo situation must be limited. Some of these limitations and other important considerations of the technique are described in this review.

Resumen

Resumen

Los tres factores más importantes para describir el valor nutritivo de los alimentos para rumiantes son: consumo, fermentación en rumen y digestion enzimática. Los experimentos con animales son normalmente caros y consumidores de tiempo, por lo que muchas técnicas in vitro han sido desarrolladas en el supuesto de ayudar en la predicción del valor nutritivo, generalmente de valor de fermentación. Una de estas técnicas es la producción de gas a partir de un sustrato que es incubado con un inóculo específico. La técnica de producción de gas mide el gas, a intervalos regulares, como indicador de la cinética de fermentación. Los perfiles de producción de gas resultantes, descritos por ecuaciones específicas, y en combinación con otros productos terminales (ejem. Ácidos grasos de cadena corta y NH3) pueden describir tanto la tasa como el potencial de fermentación de los sustratos evaluados. Esta información puede ser empleada para comparación entre sustratos. Sin embargo, el hecho de que la técnica no ha sido todavía completamente estandarizada, y que el inóculo varía de acuerdo al tiempo y lugar, significa que la comparación entre experimentos en un mismo laboratorio y entre laboratorios puede ser muy difícil. También, existen muchos otros aspectos de la técnica que dejan claro que su semejanza a la situación in vivo será siempre limitada. Algunas de estas limitaciones y otras consideraciones importantes de la técnica son descritas en esta revisión.

Type
Posters
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beuvink, J.M.W. and Kogut, J. (1993). Modelling gas production kinetics of grass silages incubated with buffered ruminal fluid. Journal of Animal Science 71: 10411046 Google Scholar
Forbes, J.M. and France, J. (1993). Quantitative aspects of ruminant digestion and metabolism. CAB International, Wallingford UKGoogle Scholar
France, J., Dhanoa, M.S., Theodorou, M.K., Lister, S.J., Davies, D.R. and Isac, D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology 163: 99111 Google Scholar
France, J., Dijkstra, J., Dhanoa, M.S., Lopez, S. and Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83: 143150 CrossRefGoogle ScholarPubMed
Getachew, G., Blümmel, M., Makkar, H.P.S. and Becker, K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology 72: 261281 CrossRefGoogle Scholar
Groot, J.C.J., Cone, J.W., Williams, B.A., Debersaques, F.M.A. and Lantinga, E.A. (1996). Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology 64: 7789 Google Scholar
Menke, K.H. and Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 755 Google Scholar
Pitt, R.E., Cross, T.L., Pell, A.N., Schofield, P. and Doane, P.H. (1999). Use of in vitro gas production models in ruminal kinetics. Mathematical Biosciences 159: 145163 Google Scholar
Schofield, P. (2000). Gas production methods. In: Farm Animal Metabolism and Nutrition: Critical Reviews Edited by D’Mello, J.P.F. CAB International, Wallingford, Oxon. UK. pp. 209232 Google Scholar
Schofield, P., Pitt, R.E. and Pell, A.N. (1994). Kinetics of fibre digestion from in vitro gas production. Journal of Animal Science 72: 29802991 Google Scholar
Williams, B.A. (2000). Cumulative gas production techniques for forage evaluation. Chapter 10- In: Forage Evaluation in Ruminant Nutrition Edited by Givens, D.I., Owen, E., Axford, R.F.E. and. Omed, H.M. CABI Publishing Wallingford, UK, pp.189213 Google Scholar
Williams, B.A., Oostdam, A.J., Groot, J.C.J., Boer, H. and Tamminga, S. (2000). Effects of ageing on the in vitro fermentation of cell walls and cell contents of entire, fractionated and composite leaves of Italian ryegrass. Journal of the Science of Food and Agriculture 80: 484490 Google Scholar