Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T23:56:55.770Z Has data issue: false hasContentIssue false

Central nervous control of voluntary food intake

Published online by Cambridge University Press:  27 February 2018

J. M. Forbes
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JT
J. E. Blundell
Affiliation:
Department of Psychology, University of Leeds, Leeds LS2 9JT
Get access

Abstract

The central nervous system is the integrator of most of the actions of the animal and as such plays a vital rôle in the control of voluntary food intake. Much of the work to understand how intake is controlled has been carried out with rats but that which has been done with pigs is included. The first experiments used electrolytic lesions in the designation of the ‘hunger centre’ and the ‘satiety centre’. Recent work has identified the paraventricular nucleus as a sensing site for experimental manipulations. Chemical stimulation of the brain has also been carried out to try to gain understanding of the rôle of neurotransmitters. Noradrenaline (NA) stimulates intake when given into many sites. Serotonin (5-HT) inhibits intake and has been claimed to play a rôle in the selection of macronutrients but 5-HT must now be interpreted in the light of the existence of several different subtypes of 5-HT receptors. Dopamine appears to moderate the hedonic response of eating. Numerous peptides are active in the brain where their rôle as neuromodulators may be quite different from their function in the periphery and at least three types of opioid receptors are implicated with kappa antagonists producing the most potent facilitatory effects. Neuropeptide Y and peptide YY produce massive orexigenic effects which readily overcome peripheral satiety factors. The brain cannot control intake in isolation. It receives inputs in the blood stream, such as glucose, as well as via the nervous system, both from the special senses and from visceral organs such as stomach, intestines and liver. Taste and olfaction are important in diet selection and a specific appetite for protein has been demonstrated in the pig.

Type
Research Article
Copyright
Copyright © British Society of Animal Production 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, A. and Kobashi, M. 1985. Chemosensitive neurons within the area postrema. Neuroscience Letters 55: 137140.CrossRefGoogle ScholarPubMed
Anand, B. K. and Brobeck, J. R. 1951. Hypothalamic control of food intake. Yale Journal of Biology and Medicine 24: 123140.Google ScholarPubMed
Anderson, G. H. 1979. Control of protein and energy intake: role of plasma amino acids and brain neurotransmitters. Canadian Journal of Physiology and Pharmacology 57: 10431057.CrossRefGoogle ScholarPubMed
Andersson, B. and Larsson, B. 1961. Influence of local temperature changes in the preoptic area and rostral hypothalamus on the regulation of food and water intake. Acta Physiologica Scandinavica 52: 7589.CrossRefGoogle ScholarPubMed
Anil, M. H. and Forbes, J. M. 1988. The roles of hepatic nerves in the reduction of food intake as a consequence of introportal sodium propionate administration in sheep. Quarterly Journal of Experimental Physiology 73: 539546.CrossRefGoogle Scholar
Antin, J., Gibbs, J., Holt, J., Young, R. and Smith, G. P. 1975. Cholecystokinin elicits the complete behavioural sequence of satiety in rats. Journal of Comparative and Physiological Psychology 89: 784790.CrossRefGoogle ScholarPubMed
Auffray, P. 1969. Effect of ventromedial hypothalamic lesions on food intake in the pig. Annates de Biologie Animate, Biochimie et Biophysique 9: 513526.CrossRefGoogle Scholar
Baile, C. A., McLaughlin, C. L. and Della-Fera, M. A. 1986. Role of cholecystokinin and opioid peptides in control of food intake. Physiological Reviews 66: 172234.CrossRefGoogle ScholarPubMed
Baldwin, B. A. 1985. Neural and hormonal mechanisms regulating food intake. Proceedings of the Nutrition Society 44: 301311.CrossRefGoogle ScholarPubMed
Baldwin, B. A. and Cooper, T. R. 1979. The effects of olfactory bulbectomy on feeding behaviour in pigs. Applied Animal Ethology 5: 153159.CrossRefGoogle Scholar
Baldwin, B. A., Cooper, T. R. and Parrott, R. F. 1983. Intravenous cholecystokinin octapeptide in pigs reduces operant responding for food, water, sucrose solution or radiant heat. Physiology and Behaviour 30: 399403.CrossRefGoogle ScholarPubMed
Baldwin, B. A., Grovum, W. L., Baile, C. A. and Brobeck, J. R. 1975. Feeding following intraventricular injection of Ca++, Mg++ or pentobarbital in pigs. Pharmacology, Biochemistry and Behaviour 3: 915918.CrossRefGoogle ScholarPubMed
Baldwin, B. A. and Parrott, R. F. 1979. Studies on intracranial electrical self-stimulation in pigs in relation to ingestive and exploratory behaviour. Physiology and Behavior 22: 723730.CrossRefGoogle ScholarPubMed
Baldwin, B. A. and Parrott, R. F. 1985. Effects of intracerebroventricular injection of naloxone on operant feeding and drinking in pigs. Pharmacology, Biochemistry and Behaviour 22: 3740.CrossRefGoogle ScholarPubMed
Barber, J., Brooks, P. H. and Carpenter, J. L. 1989. The effects of water delivery on the voluntary food intake, water use and performance of early weaned pigs from 3 to 6 weeks of age. In The Voluntary Food Intake of Pigs (ed. Forbes, J. M., Varley, M. A. and Lawrence, T. L. J.), pp. 103104. Occasional Publication, British Society of Animal Production, No. 13.Google Scholar
Bellin, S. I. and Ritter, S. 1981a. Disparate effects of infused nutrients on delayed glucoprivic feeding and hypothalamic norepinephrine turnover. Journal of Neuroscience 1: 13471353.CrossRefGoogle ScholarPubMed
Bellin, S. I. and Ritter, S. 1981b. Insulin-induced elevation of hypothalamic norepinephrine turnover persists after glucorestoration unless feeding occurs. Brain Research 217: 327337.CrossRefGoogle ScholarPubMed
Bendotti, C. and Samanin, R. 1987. The role of putative 5-HT1B and 5-HT1A receptors in the control of feeding in rats. Life Sciences 41:635642.CrossRefGoogle ScholarPubMed
Blundell, J. E. 1977. Is there a role for serotonin (5-hydroxytryptamine) in feeding? International Journal of Obesity 1: 1542.Google Scholar
Blundell, J. E. 1979. Serotonin and feeding. In Serotonin in Health and Disease. Vol. V, Clinical Applications (ed. Essman, W. B.), pp. 403450. Spectrum, New York.Google Scholar
Blundell, J. E. 1982. Neuroregulators and feeding: implications for the pharmacological manipulation of hunger and appetite. Reviews of Pure and Applied Pharmacological Sciences 3: 381462.Google ScholarPubMed
Blundell, J. E. 1983. Problems and processes underlying the control of food selection and nutrient intake. In Nutrition and the Brain. Vol. 6; Physiological and Behavioural Effects of Food Constituents (ed. Wurtman, R. J. and Wurtman, J. J.), pp. 163221. Raven Press, New York.Google Scholar
Blundell, J. E. 1984. Serotonin and appetite. Neuropharmacology 23: 15371551.CrossRefGoogle ScholarPubMed
Blundell, J. E. 1986. Serotonin manipulations and the structure of feeding behaviour. Appetite 7: Suppl., pp. 3956.CrossRefGoogle ScholarPubMed
Blundell, J. E. 1988. Role of monoamine systems in the control of food intake and nutrient selection. In Nutritional Modulation of Neural Function (ed. Morley, J. E., Sterman, M. B. and Walsh, J. H.), pp. 95123. Academic Press, New York.CrossRefGoogle Scholar
Blundell, J. E. and Hill, A. J. 1987. Nutrition, serotonin and appetite: case study in the evolution of a scientific idea. Appetite 8: 183194.CrossRefGoogle ScholarPubMed
Blundell, J. E. and Latham, C. J. 1978. Pharmacological manipulations of feeding behaviour; possible influences on serotonin and dopamine on food intake. In Central Mechanisms of Anorectic Drugs (ed. Garattini, and Samanin, R.), pp. 83109. Raven Press, New York.Google Scholar
Blundell, J. E., Latham, C. J. and Leshem, M. B. 1976. Differences between the anorexic actions of amphetamine and fenfluramine and possible effects on hunger and satiety. Journal of Pharmacy and Pharmacology 28: 471477.CrossRefGoogle ScholarPubMed
Booth, D. A. 1967. Localization of the adrenergic feeding system in the rat diencephalon. Science, New York 158: 515517.CrossRefGoogle ScholarPubMed
Bradley, P. B., Engel, G., Fenuik, W., Fozard, J. R., Humphrey, P. P., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P. and Saxena, P. R. 1986. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563576.CrossRefGoogle ScholarPubMed
Brecher, G. and Waxler, S. H. 1949. Obesity in albino mice due to single injections of gold thioglucose. Proceedings of the Society for Experimental Biology and Medicine 70: 494501.Google Scholar
Brobeck, J. R. 1948. Food intake as a mechanism of temperature regulation. Yale Journal of Biology and Medicine 20: 545552.Google ScholarPubMed
Campfield, L. A., Brandon, P. and Smith, F. J. 1985. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Resarch Bulletin 14: 605616.CrossRefGoogle ScholarPubMed
Castonguay, T. W., Dallman, M. F. and Stern, J. S. 1986. Some metabolic and behavioral effects of adrenalectomy on the obese Zucker rat. American Journal of Physiology 251: R923R933.Google Scholar
Clark, J. J., Kalra, P. S., Crowley, W. R. and Kalra, S. P. 1984. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behaviour in rats. Endocrinology 115: 427429.CrossRefGoogle ScholarPubMed
Contreras, R. J., Fox, E. and Drugovitch, M. L. 1982. Area postrema lesions produce feeding deficits in the rat: effects of preoperative dieting and 2-deoxy-D-glucose. Physiology and Behavior 29: 875884.CrossRefGoogle ScholarPubMed
Cooper, S. J., Jackson, A. and Kirkham, T. C. 1985. Endorphins and food intake: Kappa opioid receptor agonists and hyperphagia. Pharmacology, Biochemistry and Behaviour 23: 889901.CrossRefGoogle ScholarPubMed
Coscina, D. V. 1981. Qualitative similarities of serotonin-depleting midbrain lesions to vagotomy in altering weight gain in different models of obesity. In The Body Weight Regulatory System: Normal and Disturbed Mechanisms (ed. Cioffi, L. A., James, W. P. T. and Itallie, T. B. Van), pp. 1923. Raven Press, New York.Google Scholar
Davis, J. R. and Keesey, R. E. 1971. Norepinephrine-induced eating: its hypothalamic locus and an alternate interpretation of action. Journal of Comparative and Physiological Psychology 77: 394402.CrossRefGoogle Scholar
Della-Fera, M. A. and Baile, C. A. 1980. Cerebral ventricular injections of CCK-octapeptide and feed intake: the importance of continuous injection. Physiology and Behavior 24: 11331138.CrossRefGoogle ScholarPubMed
Dourish, C. J., Hutson, P. H. and Curzon, G. 1985. Low doses of the putative serotonin agonist 8-hydroxy-2 (Di-n-propylamino) tetralin (8-OH-DPAT) elicit feeding in the rat. Psychopharmacology 86: 197204.CrossRefGoogle ScholarPubMed
Devilat, J., Pond, W. G. and Miller, P. D. 1970. Dietary amino acid balance in growing-finishing pigs — effect on diet preference and performance. Journal of Animal Science 30: 536543.CrossRefGoogle Scholar
Emmans, G. C. 1988. Feed intake and diet selection by young pigs. Edinburgh School of Agriculture Annual Review 1987, pp. 7275.Google Scholar
Fernstrom, J. D. 1983. Role of precursor availability in control of monoamine biosynthesis in brain. Physiological Reviews 63: 484546.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. and Wurtman, R. J. 1973. Control of brain 5-HT content by dietary carbohydrates. In Serotonin and Behaviour (ed. Barchas, J. and Usdin, E.), pp. 121128. Academic Press, New York.Google Scholar
Flowers, S. H., Dunham, E. S. and Barbour, H. G. 1919. Addiction edema and withdrawal edema in morphinized rats. Proceedings of the Society for Experimental Biology and Medicine 26: 572574.CrossRefGoogle Scholar
Forbes, J. M. 1988. Metabolic aspects of the regulation of voluntary food intake and appetite. Nutrition Research Reviews 1: 145168.CrossRefGoogle ScholarPubMed
Gaddum, J. H. and Picarelli, Z. 1957. Two kinds of tryptamine receptor. British Journal of Pharmacology 12: 323328.Google ScholarPubMed
Geary, N. and Smith, G. P. 1985. Pimozide decreases the positive reinforcing effect of sham fed sucrose in the rat. Pharmacology, Biochemistry and Behaviour 22: 787790.CrossRefGoogle ScholarPubMed
Gosnell, B. A., Levine, A. S. and Morley, J. E. 1983. The effects of aging on opioid modulation of feeding in rats. Life Sciences 32: 27932799.CrossRefGoogle ScholarPubMed
Grill, H. J. 1986. Caudal brainstem contributions to the integrated neural control of energy homeostasis. In Feeding Behavior — Neural and Humoral Controls (ed. Ritter, R. C., Ritter, S. and Barnes, C. D.), pp. 103129. Academic Press, New York.CrossRefGoogle Scholar
Grinker, J., Marinescu, C. and Leibowitz, S. F. 1982. Effects of central injections of neurotransmitters and drugs on freely-feeding rats. Society for Neuroscience Abstracts 8: 604 (Abstr.).Google Scholar
Grossman, S. P. 1962a. Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. American Journal of Physiology 202: 872882.CrossRefGoogle ScholarPubMed
Grossman, S. P. 1962b Effects of adrenergic and cholinergic blocking agents in hypothalamic mechanisms. American Journal of Physiology 202: 1230 (Abstr.).CrossRefGoogle Scholar
Hetherington, W. and Ranson, S. W. 1940. Hypothalamic lesions and adiposity in the rat. Anatomical Record 78: 149172.CrossRefGoogle Scholar
Hoebel, B. G. 1977. Pharmacologic control of feeding. Annual Review of Pharmacology and Toxicology 17: 605621.CrossRefGoogle ScholarPubMed
Hoebel, B. G. and Leibowitz, S. F. 1981. Brain monoamines in the modulation of self-stimulation, feeding, and body weight. In Brain, Behaviour and Bodily Disease (ed. Weiner, H., Hofer, M. A. and Stunkard, A. J.), pp. 103142. Raven Press, New York.Google Scholar
Holtzman, S. G. 1974. Behavioral effects of separate and combined administration of naxalone and d-amphetamine. Journal of Pharmacology and Experimental Therapeutics 189: 5160.Google Scholar
Hoyer, D., Pazos, A., Probst, A. and Palacios, J. M. 1986. Serotonin receptors in the human brain. I. Characterisation and autoradiographic localisation of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Research 376: 8596.CrossRefGoogle Scholar
Hutson, P. H., Dourish, C. T. and Curzon, G. 1986. Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. European Journal of Pharmacology 129: 347351.CrossRefGoogle ScholarPubMed
Ingram, D. L. 1968. Effects of heating and cooling the hypothalamus on food intake in the pig. Brain Research 11: 714716.CrossRefGoogle ScholarPubMed
Inokuchi, A., Oomura, Y. and Nishimura, H. 1984. Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiology and Behavior 33: 397400.CrossRefGoogle ScholarPubMed
Jackson, H. M. and Robinson, D. W. 1971. Evidence for hypothalamic α- and β-adrenergic receptors involved in the control of food intake in the pig. British Veterinary Journal 127: 1i1iii.CrossRefGoogle Scholar
Kare, M. R., Pond, W. C. and Campbell, J. 1965. Observations on the taste reactions in pigs. Animal Behaviour 13: 265269.CrossRefGoogle ScholarPubMed
Kavaliers, M., Hirst, M. and Teskey, G. C. 1984. Opioid-induced feeding in the slug, Limax maximus. Physiology and Behavior 33: 765767.CrossRefGoogle ScholarPubMed
Kennedy, J. M. and Baldwin, B. A. 1972. Taste preferences in pigs for nutritive and non-nutritive sweet solutions. Animal Behaviour 20: 706718.CrossRefGoogle ScholarPubMed
Kennet, G. A. and Curzon, G. 1987. Evidence that the 5-HT agonists MCPP and TFMPP cause hypolocomotion by stimulating 5-HT1c receptors. Proceedings of the British Pharmacological Society, C. 78.Google Scholar
Khalaf, F. 1969. Hyperphagia and aphagia in swine with induced hypothalamic lesions. Research in Veterinary Science 10: 514517.CrossRefGoogle ScholarPubMed
Khalaf, F. and Robinson, D. W. 1972a. Observations on the phagic response of the pig to infusions of dextrose and sodium pentobarbital into the ventromedial area of the brain. Research in Veterinary Science 13: 14.CrossRefGoogle ScholarPubMed
Khalaf, F. and Robinson, D. W. 1972b. Aphagia and adipsia in pigs with induced hypothalamic lesions. Research in Veterinary Science 13: 57.CrossRefGoogle ScholarPubMed
King, B., Stmoutsos, B. A. and Grossman, S. P. 1979. Delayed response to 2-deoxy-D-glucose in hypothalamic obese rats. Pharmacology, Biochemistry and Behaviour 8: 259262.CrossRefGoogle Scholar
Leibowitz, S. F. 1978. Paraventricular nucleus: a primary site mediating adrenergic stimulation of feeding and drinking. Pharmacology, Biochemistry and Behaviour 8: 163175.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. 1980. Neurochemical systems of the hypothalamus. Control of feeding and drinking behaviour and water-electrolyte excretion. In Handbook of the Hypothalamus. Vol 3, Part A, Behavioral Studies of the Hypothalamus (ed. Morgane, P. J. and Panksepp, J.), pp. 299437. New York, Dekker.Google Scholar
Leibowitz, S. F., Brown, O., Tretter, J. R. and Kirschgessner, A. 1985. Norepinephrine, clonidine and tricyclic antidepressants selectively stimulate carbohydrate ingestion through noradrenergic system of the paraventricular nucleus. Pharmacology, Biochemistry and Behaviour 23: 541550.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. and Papadakos, P. J. 1978. Serotonin-norepinephrine interaction in the paraventricular nucleus: antagonistic effects on feeding behavior in the rat. Society for Neuroscience Abstracts 4: 177 (Abstr.).Google Scholar
Leibowitz, S. F., Roossin, P. and Rosenn, M. 1984b. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacology, Biochemistry and Behaviour 21: 801808.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. and Rossakis, C. 1978. Analysis of feeding suppression produced by perifornical hypothalamic injection of catecholamines, amphetamines and maxindol. European Journal of Pharmacology 53: 6981.CrossRefGoogle Scholar
Leibowitz, S. F., Rowland, C. R., Hor, L. and Squillari, V. 1984. Noradrenergic feeding elicited via the paraventricular nucleus is dependent upon circulating corticosterone. Physiology and Behavior 32: 857864.CrossRefGoogle ScholarPubMed
Leung, P. M. B. and Rogers, Q. R. 1986. Effect of amino acid imbalance and deficiency on dietary choice patterns of rats. Physiology and Behavior 37: 747758.CrossRefGoogle ScholarPubMed
Levine, A. S., Morley, J. E., Brown, D. M. and Handwerger, B. S. 1982. Extreme sensitivity of diabetic mice to naloxone-induced suppression of food intake. Physiology and Behavior 28: 987989.CrossRefGoogle ScholarPubMed
Li, E. T. S. and Anderson, G. H. 1983. Amino acids in the regulation of food intake. Reviews of Clinical Nutrition 53: 169181.Google Scholar
Li, E. T. S. and Anderson, G. H. 1984. 5-Hydroxytryptamine: a modulator of food composition but not quantity? Life Sciences 34: 24532460.CrossRefGoogle Scholar
Lowy, M. T., Maickel, R. P. and Yim, G. K. W. 1980. Naloxone reduction of stress-related feeding. Life Sciences 26: 21132118.CrossRefGoogle ScholarPubMed
McDermott, L. J., Alheid, G. E., Halaris, A. E. and Grossman, S. P. 1977. A correlational analysis of the effects of surgical transections of three components of the MFB on ingestive behaviour and hypothalamic, striatal and telencephalic amine concentrations. Pharmacology, Biochemistry and Behaviour 6: 203214.CrossRefGoogle ScholarPubMed
McHugh, P. R. 1983. The control of gastric emptying. Journal of the Autonomic Nervous System 9: 221231.CrossRefGoogle ScholarPubMed
Martin, G. E. and Myers, R. D. 1975. Evoked release of (14C)norepinephrine from the rat hypothalamus during feeding. American Journal of Physiology 229: 15471555.CrossRefGoogle Scholar
Martin, W. R., Wickler, A., Edes, C. G. and Pescor, F. T. 1963. Tolerance to and physical dependence on morphine in rats. Psycho-pharmacology 4: 247260.CrossRefGoogle ScholarPubMed
Mauron, C., Wurtman, J. J. and Wurtman, R. J. 1980. Clonidine increases food and protein consumption in rats. Life Sciences 27: 781791.CrossRefGoogle ScholarPubMed
Middlemiss, D. N. and Fozard, J. R. 1983. 8-hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. European Journal of Pharmacology 90: 151153.CrossRefGoogle ScholarPubMed
Miselis, R. R. and Epstein, A. N. 1975. Feeding induced by intracerebro-ventricular 2-deoxy-D-glucose in the rat. American Journal of Physiology 229: 14381447.CrossRefGoogle Scholar
Morley, J. E. and Blundell, J. E. 1988. The neurobiological basis of eating disorders: some formulations. Biological Psychiatry 23: 5378.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. L., Gosnell, B. A., Kneip, J. and Grace, M. 1987. Effect of neuropeptide Y on ingestive behaviours in the rat. American Journal of Physiology 252: R599R609.Google ScholarPubMed
Morley, J. E., Levine, A. S., Grace, M. and Kneip, J. 1985. Peptide YY (PYY), a potent orexigenic agent. Brain Research 341: 200203.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. S., Plotka, E. D. and Seal, U. S. 1983. The effect of naloxone on feeding and spontaneous locomotion in the wolf. Physiology and Behavior 30: 331334.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. S. and Rowland, N. E. 1983. Stress-induced eating. Life Sciences 32: 21692182.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. S., Yim, G. K.W. and Lowy, M. T. 1983. Opioid modulation of appetite. Neuroscience and Biobehavioral Reviews 7: 281305.CrossRefGoogle ScholarPubMed
Oomura, Y. 1976. Significance of glucose, insulin and free fatty acids on the hypothalamic feeding and satiety neurones. In Hunger, Basic Mechanisms and Clinical implications (ed. Novin, D. A., Wyrwicka, W. and Bray, G.), pp. 145158. Raven Press, New York.Google Scholar
Orthen-Gambill, N. and Kanarek, R. B. 1982. Differential effects of amphetamine and fenfluramine on dietary self-selection in rats. Pharmacology, Biochemistry and Behaviour 16: 303309.CrossRefGoogle ScholarPubMed
Parrott, R. F. and Baldwin, B. A. 1978. Effects of intracerebroventricular injections of 2-deoxy-D-glucose, D-glucosc and xylose on operant feeding in pigs. Physiology and Behavior 21: 329331.CrossRefGoogle ScholarPubMed
Parrott, R. F. and Baldwin, B. A. 1981. Operant feeding and drinking in pigs following intra-cerebroventricular injection of synthetic cholecystokinin octapeptide. Physiology and Behavior 26: 419422.CrossRefGoogle Scholar
Parrott, R. F. and Baldwin, B. A. 1982. Centrally-administered bombesin produces effects unlike short-term satiety in operant feeding pigs. Physiology and Behavior 28: 521524.CrossRefGoogle ScholarPubMed
Parrott, R. F., Heavens, R. P. and Baldwin, B. A. 1986. Stimulation of feeding in the satiated pig by intracerebroventricular injection of neuropeptide Y. Physiology and Behavior 36: 523525.CrossRefGoogle ScholarPubMed
Pereltka, S. J. and Snyder, S. H. 1979. Multiple serotonin receptors: differential binding of 3H-5-hydroxytryptamine, 3H-lysergic acid diethylamide and 3H-spiroperidol. Molecular Pharmacology 16: 687699.Google Scholar
Pickard, D. W., Hedley, W. G. and Skilbeck, S. 1977. Calcium appetite in growing pigs. Proceedings of the Nutrition Society 36: 87A (Abstr.).Google ScholarPubMed
Plata-Salaman, C. R. and Oomura, Y. 1986. Effect of intra-third ventricular administration of insulin on food intake after food deprivation. Physiology and Behavior 37: 735740.CrossRefGoogle ScholarPubMed
Rayner, D. V. and Gregory, P. C. 1989. The rôle of the gastrointestinal tract in the control of voluntary food intake. In The Voluntary Food Intake of Pigs (ed. Forbes, J. M., Varley, M. A. and Lawrence, T. L. J.), pp. 2739. Occasional Publication, British Society of Animal Production, No. 13.Google Scholar
Ritter, R. C. and Edwards, G. L. 1986. Dorsomedial hindbrain participation in control of food intake. In Feeding Behavior — Neural and Humoral Controls (ed. Ritter, C. R., Ritter, S. and Barnes, C. D.), pp. 131161. Academic Press, New York.CrossRefGoogle Scholar
Ritter, R. C. and Epstein, A. N. 1975. Control of meal size by central noradrenergic action. Proceedings of the National Academy of Sciences 72: 37403743.CrossRefGoogle ScholarPubMed
Ritter, S. 1986. Glucoprivation and the glucoprivic control of food intake. In Feeding Behavior — Neural and Humoral Controls (ed. Ritter, R. C., Ritter, S. and Barnes, C. D.), pp. 271313. Academic Press, New York.CrossRefGoogle Scholar
Ritter, S. and Strang, M. 1982. Fourth ventricular alloxan injection causes feeding but not hyperglycemia in rats. Brain Research 249: 198201.CrossRefGoogle Scholar
Robinson, D. W. 1974. Food intake regulation in pigs. 3. Voluntary food selection between protein-free and protein-rich diets. British Veterinary Journal 130: 522527.CrossRefGoogle Scholar
Robinson, D. W. 1975a. Food intake regulation in pigs. 4. The influence of dietary threonine imbalance on food intake, dietary choice and plasma amino acid patterns. British Veterinary Journal 131: 595600.CrossRefGoogle Scholar
Robinson, D. W. 1975b. Food intake regulation in pigs. 5. The influence of dietary amino acid pattern on free choice food selection. British Veterinary Journal 131: 707715.CrossRefGoogle Scholar
Rossi, J., Zolovic, A. J., Davies, R. F. and Panksepp, J. 1982. The role of norepinephrine in feeding behavior. Neuroscience and Biobehavioral Reviews 6: 195204.CrossRefGoogle ScholarPubMed
Rowland, N. E. and Carlton, J. 1986. Neurobiology of an anorectic drug: fenfluramine. Progress in Neurobiology 27: 1362.CrossRefGoogle ScholarPubMed
Sawchenko, P. E., Gold, R. M. and Leibowitz, S. F. 1981. Evidence for vagal involvement in the eating elicited by adrenergic stimulation of the paraventricular nucleus. Brain Research 225: 249269.CrossRefGoogle ScholarPubMed
Schecter, L. E. and Simansky, R. J. 1988. 1-(2,5-Dimethoxy-4-iodopheny1)-2-aminopropane (DO1) exerts an anorexic action that is blocked by 5-HT2 antagonists in rats. Psychopharmacology 94: 342346.Google Scholar
Shearman, G. T. and Tolesvia, L. 1987. Effect of the selective 5-HT3 receptor antagonists ICS 205-930 and MDL 72222 on 5-HTP-induced head shaking and behavioural symptoms induced by 5-methoxy-N, N,dimethyltryptamine in rats: comparison with some other 5-HT receptor antagonists. Psychopharmacology 92: 520523.CrossRefGoogle ScholarPubMed
Shimizu, N., Oomura, Y., Novin, D., Grualva, C. V. and Cooper, P. H. 1983. Functional correlations between lateral hypothalamic glucose-sensitive neurons and hepatic portal glucose-sensitive units in rat. Brain Research 265: 4954.CrossRefGoogle ScholarPubMed
Shor-Posner, G., Grinker, J. A., Marinescu, C., Brown, O. and Leibowitz, S. F. 1986. Hypothalamic serotonin in the control of meal patterns and macronutrient selection. Brain Research Bulletin 17: 663671.CrossRefGoogle ScholarPubMed
Shor-Posner, G., Grinker, J. A., Marinescu, C. and Leibowitz, S. F. 1985. Role of hypothalamic norepinephrine in control of meal patterns. Physiology and Behavior 35: 209214.CrossRefGoogle ScholarPubMed
Simansky, K. J., Bourbonais, K. A. and Smith, G. P. 1985. Food-related stimuli increase the ratio of 3,4-dihydroxyphenylacetic acid to dopamine in the hypothalamus. Pharmacology, Biochemistry and Behaviour 23: 253258.CrossRefGoogle ScholarPubMed
Simon, E., Pierau, F. K. and Taylor, D. C. M. 1986. Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiological Reviews 66: 235300.CrossRefGoogle ScholarPubMed
Smith, G. P., Jerome, C., Cushin, B. J., Eterno, R. and Simansky, K. J. 1981. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science, Washington 213: 10361037.CrossRefGoogle ScholarPubMed
Stanley, B. G. and Leibowitz, S. F. 1984. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sciences 33: 26352642.CrossRefGoogle Scholar
Stephens, D. B. 1985. Influence of intraduodenal glucose on meal size and its modification by 2-deoxy-D-glucose or vagotomy in hungry pigs. Quarterly Journal of Experimental Physiology 70: 129135.CrossRefGoogle ScholarPubMed
Stephens, D. B. and Baldwin, B. A. 1974. The lack of effect of intrajugular or intraportal injections of glucose or amino-acids on food intake of pigs. Physiology and Behavior 12: 923929.CrossRefGoogle ScholarPubMed
Stephens, D. B., Ingram, D. L. and Sharman, D. F. 1983. An investigation into some cerebral mechanisms involved in schedule-induced drinking in the pig. Quarterly Journal of Experimental Physiology 68: 653660.CrossRefGoogle ScholarPubMed
Storlien, L. H., Higson, F. M., Gleeson, R. M., Smythe, G. A. and Atrens, D. M. 1985. Effects of chronic lithium, amitriptyline and mianserin on glucoregulation, corticosterone and energy balance in the rat. Pharmacology, Biochemistry and Behaviour 22: 119125.CrossRefGoogle ScholarPubMed
Strohmayer, A. J., Silverman, G. and Grinker, J. A. 1980. A device for the continuous recording of solid food ingestion. Physiology and Behavior 24: 789791.CrossRefGoogle ScholarPubMed
Tatemoto, K., Carlquist, M. and Mutt, V. 1982. Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature, London 296: 659660.CrossRefGoogle ScholarPubMed
Teitelbaum, P. and Epstein, A. N. 1962. The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychological Reviews 69: 7490.CrossRefGoogle ScholarPubMed
Ungerstedt, U. 1971. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica, Supplement No. 367, pp. 95122.Google Scholar
Wahlstrom, R. C., Hauser, L. A. and Libal, G. W. 1974. Effects of low lactose whey, skim milk and sugar on diet palatability and performance of early weaned pigs. Journal of Animal Science 38: 12671271.CrossRefGoogle Scholar
Weiss, G. F. and Leibowitz, S. F. 1985. Efferent projections from the paraventricular nucleus mediating 2-noradrenergic feeding. Brain Research 347: 225238.CrossRefGoogle ScholarPubMed
Wise, R. A. 1982. Neuroleptics and operant behavior: the anhedonia hypothesis. Behavioral Brain Science 5: 3987.CrossRefGoogle Scholar
Woods, S. C., Decke, E. and Vasselli, J. R. 1974. Metabolic hormones and regulation of body weight. Psychological Reviews 81: 2643.CrossRefGoogle ScholarPubMed
Woods, S. C., Porte, D., Strubbe, J. H. and Steffens, A. B. 1986. The relationships among body fat, feeding, and insulin. In Feeding Behavior: Neural and Humoral Controls (ed. Ritter, R. C., Ritter, S. and Barnes, C. D.), pp. 315327. Academic Press, New York.CrossRefGoogle Scholar
Wurtman, J. J. and Wurtman, R. J. 1979. Drugs that enhance central serotoninergic transmission diminish elective carbohydrate consumption by rats. Life Sciences 24: 895904.CrossRefGoogle ScholarPubMed
Wurtman, R. J., Hefti, F. and Melamed, E. 1981. Precursor control of neurotransmitter synthesis. Pharmacological Reviews 32: 315335.Google Scholar
Xenakis, S. and Sclafani, A. 1981. The effects of pimozide on the consumption of a palatable saccharin-glucose solution in the rat. Pharmacology, Biochemistry and Behaviour 15: 435442.CrossRefGoogle ScholarPubMed
Zeigler, H. P. 1975. Trigeminal deafferentation and hunger in the pigeon. Journal of Comparative and Physiological Psychology 89: 827844.CrossRefGoogle ScholarPubMed
Zeigler, H. P. and Karten, H. J. 1974. Trigeminal lemniscal lesions and the lateral hypothalamic syndrome. Science, New York 190: 694696.Google Scholar