Skip to main content Accessibility help
×
Home

A probabilistic model to evaluate population dietary recommendations

  • Zaid Chalabi (a1), Elaine Ferguson (a2), Robert Stanley (a3) (a4) and André Briend (a5)

Abstract

Food-based dietary recommendations (FBR) play an essential role in promoting a healthy diet. To support the process of formulating a set of population-specific FBR, a probabilistic model was developed specifically to predict the changes in the percentage of a population at risk of inadequate nutrient intakes after the adoption of alternative sets of FBR. The model simulates the distribution of the number of servings per week from food groups or food items at baseline and after the hypothetical successful adoption of alternative sets of FBR, while ensuring that the population's energy intake distribution remains similar. The simulated changes from baseline in median nutrient intakes and the percentage of the population at risk of inadequate nutrient intakes are calculated and compared across the alternative sets of FBR. The model was illustrated using a hypothetical population of 12- to 18-month-old breast-feeding children consuming a cereal-based diet low in animal source foods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A probabilistic model to evaluate population dietary recommendations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A probabilistic model to evaluate population dietary recommendations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A probabilistic model to evaluate population dietary recommendations
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr E. Ferguson, fax +44 20 7958 8111, email elaine.ferguson@lshtm.ac.uk

References

Hide All
1 Anderson, GH, Black, R & Harris, S (2003) Dietary guidelines: past experience and new approaches. J Am Diet Assoc 103, S3S4.
2 FAO/WHO (1998) Preparation and Use of Food-Based Dietary Guidelines. Geneva, Switzerland: World Health Organization.
3 Murphy, SP & Barr, SI (2007) Good guides reflect similarities and differences in dietary guidance in three countries (Japan, Canada, and the United States). Nutr Rev 65, 141148.
4 Katamay, SW, Esslinger, KA, Vigneault, M, et al. (2007) Easting well with Canada's Food Guide (2007): development of the food intake pattern. Nutr Rev 65, 155166.
5 Ferguson, EL, Darmon, N, Briend, A, et al. (2004) Food-based dietary guidelines can be developed and tested using linear programming analysis. J Nutr 134, 951957.
6 Ferguson, EL, Darmon, N, Fahmida, U, et al. (2006) Design of optimal food-based complementary feeding recommendations and identification of key ‘problem nutrients’ using goal programming. J Nutr 136, 23992404.
7 Santika, O, Fahmida, U & Ferguson, EL (2009) Food-based complementary feeding recommendations were developed for 9–11 month old peri-urban Indonesian infants using linear programming. J Nutr 139, 135141.
8 FAO/WHO (2001) Human Energy Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation . Rome: Food and Agriculture Organization.
9 Allen, L, de Beoist, B, Dary, O, et al. (2006) Guidelines on Food Fortification with Micronutrients. Geneva, Switzerland: WHO/FAO.

Keywords

Type Description Title
PDF
Supplementary materials

Chalabi Supplementary Material
Appendix

 PDF (321 KB)
321 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed