Skip to main content Accessibility help
×
Home

Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice

  • Nida Murtaza (a1), Ritesh K. Baboota (a1), Sneha Jagtap (a2), Dhirendra P. Singh (a1), Pragyanshu Khare (a1), Siddhartha M. Sarma (a1), Koteswaraiah Podili (a3), Subramanian Alagesan (a4), T. S. Chandra (a5), K. K. Bhutani (a2), Ravneet K. Boparai (a6), Mahendra Bishnoi (a1) and Kanthi Kiran Kondepudi (a1)...

Abstract

Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr K. K. Kondepudi, fax +91 172 4604888, email kiran@nabi.res.in

References

Hide All
1 Hubert, HB, Feinleib, M, McNamara, PM, et al. (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67, 968977.
2 Kurth, T, Gaziano, JM, Berger, K, et al. (2002) Body mass index and the risk of stroke in men. Arch Intern Med 162, 25572562.
3 Calle, EE, Rodriguez, C, Walker-Thurmond, K, et al. (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348, 16251638.
4 Baboota, RK, Bishnoi, M, Ambalam, P, et al. (2013) Functional food ingredients for the management of obesity and associated co-morbidities – a review. J Funct Foods 5, 9971012.
5 Lee, SH, Chung, I-M, Cha, Y-S, et al. (2010) Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 30, 290296.
6 Truswell, AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56, 114.
7 Gupta, N, Srivastava, AK & Pandey, VN (2012) Biodiversity and nutraceutical quality of some Indian millets. Proc Natl Acad Sci India Sect B Biol Sci 82, 265273.
8 Edge, MS, Jones, JM & Marquart, L (2005) A new life for whole grains. J Am Diet Assoc 105, 18561860.
9 Mani, UV, Prabhu, BM, Damle, SS, et al. (1993) Glycaemic index of some commonly consumed foods in western India. Asia Pac J Clin Nutr 2, 111114.
10 Chethan, S & Malleshi, N (2007) Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem 105, 862870.
11 Chandrashekar, A (2014) Chapter 6 – finger millet: Eleusine coracana . In Advances in Food and Nutrition Research [Internet] (cited 23 February 2014), pp. 215262 [and Taylor, Steve L., editor]. San Diego, CA: Academic Press.
12 Sripriya, G, Chandrasekharan, K, Murty, VS, et al. (1996) ESR spectroscopic studies on free radical quenching action of finger millet (Eleusine coracana). Food Chem 57, 537540.
13 Shobana, S, Sreerama, YN & Malleshi, NG (2009) Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem 115, 12681273.
14 Hegde, PS, Chandrakasan, G & Chandra, TS (2002) Inhibition of collagen glycation and crosslinking in vitro by methanolic extracts of Finger millet (Eleusine coracana) and Kodo millet (Paspalum scrobiculatum). J Nutr Biochem 13, 517521.
15 Kumari, PL & Sumathi, S (2002) Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum Nutr 57, 205213.
16 Hegde, PS, Rajasekaran, NS & Chandra, TS (2005) Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr Res 25, 11091120.
17 Rajasekaran, NS, Nithya, M, Rose, C, et al. (2004) The effect of finger millet feeding on the early responses during the process of wound healing in diabetic rats. Biochim Biophys Acta 1689, 190201.
18 Shobana, S, Harsha, MR, Platel, K, et al. (2010) Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats. Br J Nutr 104, 17871795.
19 Kannan, S (2010) Finger millet in nutrition transition: an infant weaning food ingredient with chronic disease preventive potential. Br J Nutr 104, 17331734.
20 Saucier, G, Nadeau, G, Brunet, J, et al. (1963) Clinical use of the glucose disappearance rate. Can Med Assoc J 88, 12311237.
21 Singh, DP & Chopra, K (2013) Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur J Pharmacol 720, 98106.
22 Devi, PB, Vijayabharathi, R, Sathyabama, S, et al. (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51, 10211040.
23 Mangala, SL, Malleshi, NG, Tharanathan, RN, et al. (1999) Resistant starch from differently processed rice and ragi (finger millet). Eur Food Res Technol 209, 3237.
24 Pore, MS & Magar, NG (1976) Effect of ragi feeding on serum cholesterol level. Indian J Med Res 64, 909914.
25 Fernández-Sánchez, A, Madrigal-Santillán, E, Bautista, M, et al. (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12, 31173132.
26 Chethan, S, Dharmesh, SM & Malleshi, NG (2008) Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 16, 1008510090.
27 Frederich, RC, Hamann, A, Anderson, S, et al. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1, 13111314.
28 Nov, O, Shapiro, H, Ovadia, H, et al. (2013) Interleukin-1β regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLOS ONE 8, e53626.
29 Hotamisligil, GS, Shargill, NS & Spiegelman, BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 8791.
30 Perreault, M & Marette, A (2001) Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 7, 11381143.
31 Fried, SK, Bunkin, DA & Greenberg, AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83, 847850.
32 Kanda, H (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116, 14941505.
33 Kamei, N, Tobe, K, Suzuki, R, et al. (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281, 2660226614.
34 Zhang, HH, Halbleib, M, Ahmad, F, et al. (2002) Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51, 29292935.
35 Nonogaki, K, Fuller, GM, Fuentes, NL, et al. (1995) Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology 136, 21432149.
36 Uysal, KT, Wiesbrock, SM, Marino, MW, et al. (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610614.
37 Bahar, B, O'Doherty, JV & Sweeney, T (2011) A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis. Br J Nutr 106, 11421153.
38 Smas, CM & Sul, HS (1993) Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73, 725734.
39 Wang, Y & Sul, HS (2009) Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 9, 287302.
40 Kern, PA, Di Gregorio, G, Lu, T, et al. (2004) Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab 89, 13521358.
41 Sawada, T, Miyoshi, H, Shimada, K, et al. (2010) Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLoS ONE 5, e14006.
42 Berger, J, Biswas, C, Vicario, PP, et al. (1989) Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340, 7072.
43 Garvey, WT, Huecksteadt, TP & Birnbaum, MJ (1989) Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245, 6063.
44 Minokoshi, Y, Kahn, CR & Kahn, BB (2003) Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 278, 3360933612.
45 Ravussin, E & Smith, SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci 967, 363378.
46 Delzenne, NM & Cani, PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31, 1531.
47 Turnbaugh, PJ, Bäckhed, F, Fulton, L, et al. (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213223.
48 Ouchi, N, Parker, JL, Lugus, JJ, et al. (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 8597.
49 Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 17611772.
50 Fei, N & Zhao, L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7, 880884.
51 Neyrinck, AM, Possemiers, S, Druart, C, et al. (2011) Prebiotic effects of wheat arabinoxylan related to the increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6, e20944.
52 Flint, HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70, S10S13.
53 Gao, Z, Yin, J, Zhang, J, et al. (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 15091517.
54 Benjamin, S & Spener, F (2009) Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr Metab 6, 36.

Keywords

Type Description Title
WORD
Supplementary materials

Murtaza Supplementary Material
Table S1

 Word (17 KB)
17 KB
WORD
Supplementary materials

Murtaza Supplementary Material
Table S2

 Word (20 KB)
20 KB
WORD
Supplementary materials

Murtaza Supplementary Material
Figure S1

 Word (303 KB)
303 KB

Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice

  • Nida Murtaza (a1), Ritesh K. Baboota (a1), Sneha Jagtap (a2), Dhirendra P. Singh (a1), Pragyanshu Khare (a1), Siddhartha M. Sarma (a1), Koteswaraiah Podili (a3), Subramanian Alagesan (a4), T. S. Chandra (a5), K. K. Bhutani (a2), Ravneet K. Boparai (a6), Mahendra Bishnoi (a1) and Kanthi Kiran Kondepudi (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed