Skip to main content Accessibility help
×
Home

Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat

  • Christine M. Williams (a1) and K. Maunder (a1)

Abstract

The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated: saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat
      Available formats
      ×

Copyright

References

Hide All
Ahmed, K. & Holub, B. J. (1984). Alteration and recovery of bleeding times, platelet aggregation and fatty acid composition of individual phospholipids in platelets of human subjects receiving a supplement of cod-liver oil. Lipids 19, 617624.
Armstrong, B. & Doll, R. (1975). Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. International Journal of Cancer 15, 617631.
Bartlett, G. R. (1959). Phosphorus assay in column chromatography. Journal of Biological Chemistry 234, 466468.
Berrino, F. & Muti, P. (1989). Mediterranean diet and cancer. European Journal of Clinical Nutrition 43, 4955.
Borochov, H., Zahler, P. & Wilbrandt, W. (1977). The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane. Biochimica et Biophysica Acta 470, 382388.
Boyd, P. & Leake, R. (1988). Progress in understanding breast cancer: epidemiological and biological interactions. Breast Cancer Research and Treatment 11, 91112.
Byers, T. (1988). Diet and cancer. Any progress in the interim? Cancer 62, 17131724.
Carroll, K. K. & Khor, K. T. (1975). Dietary fat in relation to tumorigenesis. Progress in Biochemical Pharmacology 10, 308353.
Correa, P. (1981). Nutrition and cancer: epidemiological correlations. In The Practice of Cancer Prevention in Clinical Medicine, pp. 110 [Newell, G. R., editor]. New York: Raven Press.
Galloway, J. H., Cartwright, I. J., Woodcock, B. E., Greaves, M., Russell, G. G. & Preston, F. E. (1985). Effects of dietary fish oil supplementation on the fatty acid composition of the human platelet membrane: demonstration of selectivity in the incorporation of eicosapentaenoic acid into membrane phospholipid pools. Clinical Science 68, 449454.
Garg, M. L., Sabine, J. R. & Snoswell, A. M. (1985). A comparison of the influence of diets high in saturated versus unsaturated fatty acids on lipid composition and glucose-6-phosphate activity of rat liver microsomes. Biochemistry International 10, 585595.
Gibney, M. J. & Bolton-Smith, C. (1988). The effect of a dietary supplement of n-3 polyunsaturated fat on platelet lipid composition, platelet function and platelet plasma membrane fluidity in healthy volunteers. British Journal of Nutrition 60, 512.
Glenn, J. L. & Dam, H. (1965). Influence of dietary lipids on the fatty acid composition of neutral lipids and phosphatides in chick liver and bile. Journal of Nutrition 86, 143153.
Hill, J. G., Kukis, A. & Beveridge, J. M. R. (1965). The effect of diet on the phospholipid composition of the red blood cells of man. Journal of the American Oil Chemists' Society 42, 137141.
Ip, C. (1987). Fat and essential fatty acid in mammary carcinogenesis. American Journal of Clinical Nutrition 45, 218224.
Jurkowski, J. J. & Cave, W. T. (1985). Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. Journal of the National Cancer Institute 74, 11451150.
Karmali, R. A., Marsh, J. & Fuchs, C. (1984). Effects of omega-3 fatty acids on growth of a rat mammary tumor. Journal of the National Cancer Institute 73, 457461.
Nishizuka, Y. (1984). Turnover of inositol phospholipids and signal transduction. Science 225, 13651370.
Schouten, J. A., Beynen, A. C. & Popp-Snijders, C. (1985). Effect of a hypercholesterolemic diet on the fatty acid composition of rat erythrocyte phospholipids. Nutrition Reports International 31, 229236.
Smith, J. E. (1987). Erythrocyte membrane: Structure, function and pathophysiology. Veterinary Pathology 24, 471476.
Toniolo, P., Riboli, E., Protta, F., Charrel, M. & Cappa, A. P. M. (1989). Calorie-providing nutrients and risk of breast cancer. Journal of the National Cancer Institute 81, 278286.
Wahle, K. W. J. (1983). Fatty acid modification and membrane lipids. Proceedings of the Nutrition Society 42, 273285.
Weiner, T. W. & Sprecher, H. (1984). Arachidonic acid, 5,8,11,-eicosatrienoic acid and 5,8,11,14,17-eicosapentaenoic acid. Dietary manipulation of levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet lipids. Biochimica et Biophysica Acta 792, 293303.
Welsch, C. W. (1985). Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: A review and tribute to Charles Brenton Huggins. Cancer Research 45, 34153443.
Welsch, C. W. (1987). Enhancement of mammary tumorigenesis by dietary fat: review of potential mechanisms. American Journal of Clinical Nutrition 45, 192202.
Williams, C. M. & Dickerson, J. W. T. (1987). Dietary fat, hormones and breast cancer; the cell membrane as a possible site of interaction of these two risk factors. European Journal of Surgical Oncology 13, 89104.
Williams, C. M. & Maunder, K. (1989). The effect of a low-fat diet on luteal-phase prolactin and oestradiol concentrations and erythrocyte phospholipids in normal premenopausal women. British Journal of Nutrition 61, 651661.
Woodcock, B. E., Smith, E., Lambert, W. H., Morris-Jones, W., Galloway, J. H., Greaves, M. & Preston, F. E. (1984). Beneficial effect offish oil on blood viscosity in peripheral vascular disease. British Medical Journal 228, 592595.

Keywords

Effect of dietary fatty acid composition on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat

  • Christine M. Williams (a1) and K. Maunder (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed