Skip to main content Accessibility help
×
Home

Distribution of α-tocopherol stereoisomers in mink (Mustela vison) organs varies with the amount of all-rac-α-tocopheryl acetate in the diet

  • Lone Hymøller (a1), Saman Lashkari (a1), Tove N. Clausen (a2) and Søren K. Jensen (a1)

Abstract

Synthetic α-tocopherol has eight isomeric configurations including four 2R (RSS, RRS, RSR, RRR) and four 2S (SRR, SSR, SRS, SSS). Only the RRR stereoisomer is naturally synthesised by plants. A ratio of 1·36:1 in biopotency of RRR-α-tocopheryl acetate to all-rac-α-tocopheryl acetate is generally accepted; however, studies indicate that neither biopotency of α-tocopherol stereoisomers nor bioavailability between them is constant, but depend on dose, time, animal species and organs. A total of forty growing young male mink were, after weaning, assigned one of the following treatments for 90 d: no α-tocopherol in diet (ALFA_0), 40 mg/kg RRR-α-tocopheryl acetate (NAT_40), 40 mg/kg all-rac-α-tocopheryl acetate (SYN_40) and 80 mg/kg feed all-rac-α-tocopheryl acetate (SYN_80). Mink were euthanised in CO2 and blood was collected by heart puncture. Mink were pelted and liver, heart, lungs, brain and abdominal fat were collected for α-tocopherol stereoisomer analysis. The proportion of RRR-α-tocopherol decreased in all organs and plasma with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05), whereas the proportion of all synthetic α-tocopherol stereoisomers increased with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05). The proportion of α-tocopherol stereoisomers in plasma, brain, heart, lungs and abdominal fat showed the following order: RRR>RRS, RSR, RSS>Σ2S, regardless of α-tocopherol supplement. The liver had the highest proportion of Σ2S stereoisomers, and lowest proportion of RRR-α-tocopherol. In conclusion, distribution of α-tocopherol stereoisomers differs with dose and form of α-tocopherol supplementation. The results did also reveal the liver’s role as the major organ for accumulation of Σ2S α-tocopherol stereoisomers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Distribution of α-tocopherol stereoisomers in mink (Mustela vison) organs varies with the amount of all-rac-α-tocopheryl acetate in the diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Distribution of α-tocopherol stereoisomers in mink (Mustela vison) organs varies with the amount of all-rac-α-tocopheryl acetate in the diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Distribution of α-tocopherol stereoisomers in mink (Mustela vison) organs varies with the amount of all-rac-α-tocopheryl acetate in the diet
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: S. K. Jensen, fax +45 87 15 02 01, email skj@anis.au.dk

References

Hide All
1. Kono, N & Arai, H (2015) Intracellular transport of fat‐soluble vitamins A and E. Traffic 16, 1934.
2. Jensen, SK, Engberg, RM & Hedemann, MS (1999) All-rac-α-tocopherol acetate is a better vitamin E source than all-rac-α-tocopherol succinate for broilers. J Nutr 129, 13551360.
3. Hymøller, L, Clausen, TN & Jensen, SK (2016) Interactions between retinol, α-tocopherol and cholecalciferol need consideration in diets for farmed mink (Mustela vison). Br J Nutr 115, 751758.
4. Hedemann, M & Jensen, S (1999) Vitamin E status in newly weaned piglets is correlated to the activity of carboxylester hydrolase in pancreatic tissue. In Manipulating Pig Production VII Proceedings of the Seventh Biennial Conference of the Australasian Pig Science Association, p. 181 [PD Cranwell, editor]. Werribee: APSA.
5. Hedemann, MS, Clausen, T & Jensen, SK (2011) Changes in digestive enzyme activity, intestine morphology, mucin characteristics and tocopherol status in mink kits (Mustela neovision) during the weaning period. Animal 5, 394402.
6. Burton, GW, Traber, MG, Acuff, RV, et al. (1998) Human plasma and tissue alpha-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. Am J Clin Nutr 67, 669684.
7. Jensen, SK, Nørgaard, JV & Lauridsen, C (2006) Bioavailability of α-tocopherol stereoisomers in rats depends on dietary doses of all-rac-or RRR-α-tocopheryl acetate. Br J Nutr 95, 477487.
8. Blatt, DH, Pryor, WA, Mata, JE, et al. (2004) Re-evaluation of the relative potency of synthetic and natural α-tocopherol: experimental and clinical observations. J Nutr Biochem 15, 380395.
9. Council, NR & Council, NR (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press.
10. Kuchan, MJ, Jensen, SK, Johnson, EJ, et al. (2016) The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain. Br J Nutr 116, 126131.
11. Gaur, S, Kuchan, MJ, Lai, C-S, et al. (2017) Supplementation with RRR-or all-rac-α-tocopherol differentially affects the α-tocopherol stereoisomer profile in the milk and plasma of lactating women. J Nutr 147, 13011307.
12. Kaneko, K, Kiyose, C, Ueda, T, et al. (2000) Studies of the metabolism of α-tocopherol stereoisomers in rats using [5-methyl-14C] SRR-and RRR-α-tocopherol. J Lipid Res 41, 357367.
13. Ingold, K, Burton, G, Foster, D, et al. (1987) Biokinetics of and discrimination between dietary RRR‐ and SRRα‐tocopherols in the male rat. Lipids 22, 163172.
14. Hosomi, A, Arita, M, Sato, Y, et al. (1997) Affinity for α‐tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409, 105108.
15. Traber, MG, Elsner, A & Brigelius-Flohé, R (1998) Synthetic as compared with natural vitamin E is preferentially excreted as α‐CEHC in human urine: studies using deuterated α‐tocopheryl acetates. FEBS Lett 437, 145148.
16. Weiser, H & Vecchi, M (1982) Stereoisomers of alpha-tocopheryl acetate. II. Biopotencies of all eight stereoisomers, individually or in mixtures, as determined by rat resorption-gestation tests. Int J Vitam Nutr Res 52, 351370.

Keywords

Distribution of α-tocopherol stereoisomers in mink (Mustela vison) organs varies with the amount of all-rac-α-tocopheryl acetate in the diet

  • Lone Hymøller (a1), Saman Lashkari (a1), Tove N. Clausen (a2) and Søren K. Jensen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed