Skip to main content Accessibility help
×
Home

Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice

  • Yue Yang (a1), Tho X. Pham (a1), Casey J. Wegner (a1), Bohkyung Kim (a1), Chai Siah Ku (a1), Young-Ki Park (a1) and Ji-Young Lee (a1)...

Abstract

Non-alcoholic fatty liver disease (NAFLD) is significantly associated with hyperlipidaemia and oxidative stress. We have previously reported that astaxanthin (ASTX), a xanthophyll carotenoid, lowers plasma total cholesterol and TAG concentrations in apoE knockout mice. To investigate whether ASTX supplementation can prevent the development of NAFLD in obesity, male C57BL/6J mice (n 8 per group) were fed a high-fat diet (35 %, w/w) supplemented with 0, 0·003, 0·01 or 0·03 % of ASTX (w/w) for 12 weeks. The 0·03 % ASTX-supplemented group, but not the other groups, exhibited a significant decrease in plasma TAG concentrations, suggesting that ASTX at a 0·03 % supplementation dosage exerts a hypotriacylglycerolaemic effect. Although there was an increase in the mRNA expression of fatty acid synthase and diglyceride acyltransferase 2, the mRNA levels of acyl-CoA oxidase 1, a critical enzyme in peroxisomal fatty acid β-oxidation, exhibited an increase in the 0·03 % ASTX-supplemented group. There was a decrease in plasma alanine transaminase (ALT) and aspartate transaminase (AST) concentrations in the 0·03 % ASTX-supplemented group. There was a significant increase in the hepatic mRNA expression of nuclear factor erythroid 2-related factor 2 and its downstream genes, which are critical for endogenous antioxidant mechanism, in the 0·03 % ASTX-supplemented group. Furthermore, there was a significant decrease in the mRNA abundance of IL-6 in the primary splenocytes isolated from the 0·03 % ASTX-supplemented group upon lipopolysaccharide (LPS) stimulation when compared with that in the splenocytes isolated from the control group. In conclusion, ASTX supplementation lowered the plasma concentrations of TAG, ALT and AST, increased the hepatic expression of endogenous antioxidant genes, and rendered splenocytes less sensitive to LPS stimulation. Therefore, ASTX may prevent obesity-associated metabolic disturbances and inflammation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr J.-Y. Lee, fax +1 860 486 3674, email ji-young.lee@uconn.edu

References

Hide All
1 Angulo, P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346, 12211231.
2 Ludwig, J, Viggiano, TR, McGill, DB, et al. (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55, 434438.
3 Rector, RS, Thyfault, JP, Wei, Y, et al. (2008) Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 14, 185192.
4 Marra, F, Gastaldelli, A, Svegliati Baroni, G, et al. (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14, 7281.
5 Brown, WV, Fujioka, K, Wilson, PW, et al. (2009) Obesity: why be concerned? Am J Med 122, S4S11.
6 Vernon, G, Baranova, A & Younossi, ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34, 274285.
7 Marchesini, G, Bugianesi, E, Forlani, G, et al. (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37, 917923.
8 Hussein, G, Sankawa, U, Goto, H, et al. (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69, 443449.
9 Pashkow, FJ, Watumull, DG & Campbell, CL (2008) Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101, 58D68D.
10 Guerin, M, Huntley, ME & Olaizola, M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21, 210216.
11 Goto, S, Kogure, K, Abe, K, et al. (2001) Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta 1512, 251258.
12 Kurashige, M, Okimasu, E, Inoue, M, et al. (1990) Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol Chem Phys Med NMR 22, 2738.
13 Yang, Y, Seo, JM, Nguyen, A, et al. (2011) Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr 141, 16111617.
14 Lee, SJ, Bai, SK, Lee, KS, et al. (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol Cells 16, 97105.
15 Uchiyama, K, Naito, Y, Hasegawa, G, et al. (2002) Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep 7, 290293.
16 Karppi, J, Rissanen, TH, Nyyssonen, K, et al. (2007) Effects of astaxanthin supplementation on lipid peroxidation. Int J Vitam Nutr Res 77, 311.
17 Yoshida, H, Yanai, H, Ito, K, et al. (2010) Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 209, 520523.
18 Reagan-Shaw, S, Nihal, M & Ahmad, N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659661.
19 Rasmussen, HE, Blobaum, KR, Jesch, ED, et al. (2009) Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kutzing, an edible blue-green alga. Eur J Nutr 48, 387394.
20 Yang, Y, Park, Y, Cassada, DA, et al. (2011) In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina platensis . Food Chem Toxicol 49, 15601564.
21 Rasmussen, HE, Blobaum, KR, Park, YK, et al. (2008) Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. J Nutr 138, 476481.
22 Park, YK, Rasmussen, HE, Ehlers, SJ, et al. (2008) Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kappaB in RAW 264.7 macrophages. Nutr Res 28, 8391.
23 Ku, CS, Pham, TX, Park, Y, et al. (2013) Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochim Biophys Acta 1830, 29812988.
24 Tosello-Trampont, AC, Landes, SG, Nguyen, V, et al. (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 287, 4016140172.
25 Wang, C, Yu, X, Cao, Q, et al. (2013) Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol 14, 6.
26 Dowman, JK, Tomlinson, JW & Newsome, PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 7183.
27 Day, CP & James, OFW (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842845.
28 Tilg, H & Moschen, AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 18361846.
29 Bellentani, S, Scaglioni, F, Marino, M, et al. (2010) Epidemiology of non-alcoholic fatty liver disease. Dig Dis 28, 155161.
30 Fabbrini, E, Sullivan, S & Klein, S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679689.
31 Scheig, R (1996) Evaluation of tests used to screen patients with liver disorders. Prim Care 23, 551560.
32 Malmstrom, R, Packard, CJ, Caslake, M, et al. (1997) Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia 40, 454462.
33 Subramanian, S & Chait, A (2012) Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta 1821, 819825.
34 Hassing, HC, Surendran, RP, Mooij, HL, et al. (2012) Pathophysiology of hypertriglyceridemia. Biochim Biophys Acta 1821, 826832.
35 Scaglioni, F, Ciccia, S, Marino, M, et al. (2011) ASH and NASH. Dig Dis 29, 202210.
36 Rashid, S, Watanabe, T, Sakaue, T, et al. (2003) Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem 36, 421429.
37 Lee, YS & Jeong, WI (2012) Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol 27, Suppl. 2, 7579.
38 Dooley, S, Delvoux, B, Lahme, B, et al. (2000) Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31, 10941106.
39 Jang, CW, Chen, CH, Chen, CC, et al. (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4, 5158.
40 Bonniaud, P, Margetts, PJ, Ask, K, et al. (2005) TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 175, 53905395.
41 Biernacka, A, Dobaczewski, M & Frangogiannis, NG (2011) TGF-βsignaling in fibrosis. Growth Factors 29, 196202.
42 Barcellos-Hoff, MH & Dix, TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10, 10771083.
43 Hwang, S-A, Dasgupta, A & Actor, JK (2004) Cytokine production by non-adherent mouse splenocyte cultures to Echinacea extracts. Clin Chim Acta 343, 161166.
44 Aleksunes, LM & Manautou, JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35, 459473.
45 Kaspar, JW, Niture, SK & Jaiswal, AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47, 13041309.
46 Jia, Y, Kim, JY, Jun, HJ, et al. (2012) The natural carotenoid astaxanthin, a PPAR-alpha agonist and PPAR-gamma antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. Mol Nutr Food Res 56, 878888.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed