Skip to main content Accessibility help
×
Home

Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women

  • Masaki Takahashi (a1), Masashi Miyashita (a2), Katsuhiko Suzuki (a1), Seong-ryu Bae (a3), Hyeon-Ki Kim (a3), Takuya Wakisaka (a4), Yuji Matsui (a4), Masao Takeshita (a4) and Koichi Yasunaga (a4)...

Abstract

Elevated postprandial hyperglycaemia and oxidative stress increase the risks of type 2 diabetes and CVD. Green tea catechin possesses antidiabetic properties and antioxidant capacity. In the present study, we examined the acute and continuous effects of ingestion of catechin-rich green tea on postprandial hyperglycaemia and oxidative stress in healthy postmenopausal women. Participants were randomly assigned into the placebo (P, n 11) or green tea (GT, n 11) group. The GT group consumed a catechin-rich green tea (catechins 615 mg/350 ml) beverage per d for 4 weeks. The P group consumed a placebo (catechins 92 mg/350 ml) beverage per d for 4 weeks. At baseline and after 4 weeks, participants of each group consumed their designated beverages with breakfast and consumed lunch 3 h after breakfast. Venous blood samples were collected in the fasted state (0 h) and at 2, 4 and 6 h after breakfast. Postprandial glucose concentrations were 3 % lower in the GT group than in the P group (three-factor ANOVA, group × time interaction, P< 0·05). Serum concentrations of the derivatives of reactive oxygen metabolites increased after meals (P< 0·05), but no effect of catechin-rich green tea intake was observed. Conversely, serum postprandial thioredoxin concentrations were 5 % higher in the GT group than in the P group (three-factor ANOVA, group × time interaction, P< 0·05). These findings indicate that an acute ingestion of catechin-rich green tea has beneficial effects on postprandial glucose and redox homeostasis in postmenopausal women.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr M. Miyashita, fax +81 42 329 7622, email masashi@u-gakugei.ac.jp

References

Hide All
1 Kuriyama, S (2008) The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr 138, 1548S1553S.
2 Kuriyama, S, Shimazu, T, Ohmori, K, et al. (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296, 12551265.
3 Suzuki, E, Yorifuji, T, Takao, S, et al. (2009) Green tea consumption and mortality among Japanese elderly people: the prospective Shizuoka elderly cohort. Ann Epidemiol 19, 732739.
4 Zheng, XX, Xu, YL, Li, SH, et al. (2013) Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am J Clin Nutr 97, 750762.
5 Liu, K, Zhou, R, Wang, B, et al. (2013) Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr 98, 340348.
6 Anonymous (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe. Lancet 354, 617621.
7 Nakagami, T & DECODA Study Group, (2004) Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia 47, 385394.
8 Bae, JH, Bassenge, E, Kim, KB, et al. (2001) Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 155, 517523.
9 Monnier, L, Mas, E, Ginet, C, et al. (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 16811687.
10 Sies, H, Stahl, W & Sevanian, A (2005) Nutritional, dietary and postprandial oxidative stress. J Nutr 135, 969972.
11 Bloomer, RJ, Kabir, MM, Marshall, KE, et al. (2010) Postprandial oxidative stress in response to dextrose and lipid meals of differing size. Lipids Health Dis 9, 79.
12 Wallace, JP, Johnson, B, Padilla, J, et al. (2010) Postprandial lipaemia, oxidative stress and endothelial function: a review. Int J Clin Pract 64, 389403.
13 Neri, S, Calvagno, S, Mauceri, B, et al. (2010) Effects of antioxidants on postprandial oxidative stress and endothelial dysfunction in subjects with impaired glucose tolerance and type 2 diabetes. Eur J Nutr 49, 409416.
14 Koutelidakis, AE, Rallidis, L, Koniari, K, et al. (2013) Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur J Nutr 53, 479486.
15 Bloomer, RJ, Trepanowski, JF & Farney, TM (2013) Influence of acute coffee consumption on postprandial oxidative stress. Nutr Metab Insights 6, 3542.
16 Bogdanski, P, Suliburska, J, Szulinska, M, et al. (2012) Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 32, 421427.
17 Erba, D, Riso, P, Bordoni, A, et al. (2005) Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem 16, 144149.
18 Panza, VS, Wazlawik, E, Ricardo Schutz, G, et al. (2008) Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition 24, 433442.
19 Mecocci, P, Fano, G, Fulle, S, et al. (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26, 303308.
20 Inami, S, Takano, M, Yamamoto, M, et al. (2007) Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J 48, 725732.
21 Jowko, E, Sacharuk, J, Balasinska, B, et al. (2011) Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res 31, 813821.
22 Bloomer, RJ, Ferebee, DE, Fisher-Wellman, KH, et al. (2009) Postprandial oxidative stress: influence of sex and exercise training status. Med Sci Sports Exerc 41, 21112119.
23 Tsai, WC, Li, YH, Lin, CC, et al. (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond) 106, 315319.
24 Ayabe, M, Kumahara, H, Morimura, K, et al. (2013) Accumulation of short bouts of non-exercise daily physical activity is associated with lower visceral fat in Japanese female adults. Inter J Sports Med 34, 6267.
25 Kumahara, H, Schutz, Y, Ayabe, M, et al. (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91, 235243.
26 Unno, T, Sagesaka, YM & Kakuda, T (2005) Analysis of tea catechins in human plasma by high-performance liquid chromatography with solid-phase extraction. J Agric Food Chem 53, 98859889.
27 Umegaki, K, Sugisawa, A, Yamada, K, et al. (2001) Analytical method of measuring tea catechins in human plasma by solid-phase extraction and HPLC with electrochemical detection. J Nutr Sci Vitaminol (Tokyo) 47, 402408.
28 Cornelli, U, Terranova, R, Luca, S, et al. (2001) Bioavailability and antioxidant activity of some food supplements in men and women using the D-Roms test as a marker of oxidative stress. J Nutr 131, 32083211.
29 Pasquini, A, Luchetti, E, Marchetti, V, et al. (2008) Analytical performances of d-ROMs test and BAP test in canine plasma. Definition of the normal range in healthy Labrador dogs. Vet Res Commun 32, 137143.
30 Narotzki, B, Reznick, AZ, Navot-Mintzer, D, et al. (2013) Green tea and vitamin E enhance exercise-induced benefits in body composition, glucose homeostasis, and antioxidant status in elderly men and women. J Am Coll Nutr 32, 3140.
31 Venables, MC, Hulston, CJ, Cox, HR, et al. (2008) Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr 87, 778784.
32 Cohen, J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
33 Suliburska, J, Bogdanski, P, Szulinska, M, et al. (2012) Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients. Biol Trace Elem Res 149, 315322.
34 Rietveld, A & Wiseman, S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133, 3285S3292S.
35 Wu, LY, Juan, CC, Ho, LT, et al. (2004) Effect of green tea supplementation on insulin sensitivity in Sprague–Dawley rats. J Agric Food Chem 52, 643648.
36 Wu, LY, Juan, CC, Hwang, LS, et al. (2004) Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr 43, 116124.
37 Sakurai, N, Mochizuki, K, Kameji, H, et al. (2009) ( − )-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation. Nutrition 25, 10471056.
38 Collins, QF, Liu, HY, Pi, J, et al. (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282, 3014330149.
39 Roghani, M & Baluchnejadmojarad, T (2010) Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology 17, 5559.
40 Ceriello, A, Taboga, C, Tonutti, L, et al. (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106, 12111218.
41 Lappalainen, Z, Lappalainen, J, Oksala, NK, et al. (2009) Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol (1985) 106, 461467.
42 Tanito, M, Agbaga, MP & Anderson, RE (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro . Free Radic Biol Med 42, 18381850.
43 Sahin, K, Tuzcu, M, Gencoglu, H, et al. (2010) Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 87, 240245.
44 Ceriello, A, Esposito, K, Piconi, L, et al. (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57, 13491354.
45 Wu, AH, Spicer, D, Stanczyk, FZ, et al. (2012) Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women. Cancer Prev Res 5, 393402.
46 Berndt, C, Lillig, CH & Holmgren, A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292, H1227H1236.
47 Veskoukis, AS, Nikolaidis, MG, Kyparos, A, et al. (2009) Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med 47, 13711374.
48 Gil, L, Siems, W, Mazurek, B, et al. (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40, 495505.
49 Dato, S, Crocco, P, D'Aquila, P, et al. (2013) Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci 14, 1644316472.
50 Bocci, V & Valacchi, G (2013) Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem 20, 33973415.

Keywords

Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women

  • Masaki Takahashi (a1), Masashi Miyashita (a2), Katsuhiko Suzuki (a1), Seong-ryu Bae (a3), Hyeon-Ki Kim (a3), Takuya Wakisaka (a4), Yuji Matsui (a4), Masao Takeshita (a4) and Koichi Yasunaga (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed