Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T06:34:41.810Z Has data issue: false hasContentIssue false

For better or worse, or for a change?

Published online by Cambridge University Press:  05 January 2017

Sebastien Bouret*
Affiliation:
CNRS, Team Motivation Brain & Behavior, ICM—Institut du Cerveau et de la Moelle épinière, Hôpital Pitié-Salpêtrière, 75013 Paris, Francesebastien.bouret@icm-institute.orghttps://sites.google.com/site/motivationbrainbehavior

Abstract

The noradrenergic system is intimately related to the autonomic system and is thought to play a key role at the interface between arousal and cognition. The GANE (glutamate amplifies noradrenergic effects) theory proposes a complete account of that role, with an emphasis on the quantitative effect of noradrenaline on stimulus processing. This is in marked contrast to network reset theory, which emphasizes the qualitative effect of noradrenaline of updating the representation of the environment.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. T. (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience 10(6):410–22. Available at: http://doi.org/10.1038/nrn2648.CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Bloom, F. E. (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of Neuroscience 1(8):887900.CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Cohen, J. D. (2005) An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–50. http://doi.org/10.1146/annurev.neuro.28.061604.135709.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., van Bockstaele, E. J., Pieribone, V. A., Shiekhattar, R., Akaoka, H., Drolet, G. & Astier, B. (1991) Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. Progress in Brain Research 88:4775.CrossRefGoogle ScholarPubMed
Berridge, C. W. & Waterhouse, B. D. (2003) The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 42(1):3384. doi: 10.1016/s0165-0173(03)00143-7.CrossRefGoogle ScholarPubMed
Bouret, S. & Sara, S. J. (2004) Reward expectation, orientation of attention and locus coeruleus–medial frontal cortex interplay during learning. European Journal of Neuroscience 20(3):791802. Available at: http://doi.org/10.1111/j.1460-9568.2004.03526.x.CrossRefGoogle ScholarPubMed
Bouret, S. & Sara, S. J. (2005) Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences 28(11):574–82. Available at: http://dx.doi.org/10.1016/j.tins.2005.09.002.CrossRefGoogle Scholar
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K. & de Lecea, L. (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience 13(12):1526–33. Available at: http://doi.org/10.1038/nn.2682.CrossRefGoogle ScholarPubMed
Clayton, E. C., Rajkowski, J., Cohen, J. D. & Aston-Jones, G. (2004) Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. The Journal of Neuroscience 24(44):9914–20. Available at: http://doi.org/10.1523/JNEUROSCI.2446-04.2004.CrossRefGoogle Scholar
Dalley, J. W., McGaughy, J., O'Connell, M. T., Cardinal, R. N., Levita, L. & Robbins, T. W. (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. The Journal of Neuroscience 21(13):4908–14.CrossRefGoogle ScholarPubMed
Devauges, V. & Sara, S. J. (1990) Activation of the noradrenergic system facilitates an attentional shift in the rat. Behavioural Brain Research 39(1):1928.CrossRefGoogle ScholarPubMed
Einhäuser, W., Stout, J., Koch, C. & Carter, O. L. (2008) Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America 105(5):1704–709. Available at: http://doi.org/10.1073/pnas.0707727105.CrossRefGoogle ScholarPubMed
Foote, S. L., Aston-Jones, G. & Bloom, F. E. (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the United States of America 77(5):3033–37.CrossRefGoogle ScholarPubMed
Jacobs, B. L. (1986) Single unit activity of locus coeruleus neurons in behaving animals. Progress in Neurobiology 27(2):183–94.CrossRefGoogle ScholarPubMed
James, W. (1913) The principles of psychology, vol 2. Henry Holt.CrossRefGoogle Scholar
Jepma, M. & Nieuwenhuis, S. (2011) Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience 23:1587–96. Available at: http://doi.org/10.1162/jocn.2010.21548.CrossRefGoogle ScholarPubMed
McGaughy, J., Ross, R. S. & Eichenbaum, H. (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153(1):6371. Available at: http://doi.org/10.1016/j.neuroscience.2008.01.064.CrossRefGoogle Scholar
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B. & Gold, J. I. (2012) Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience 15(7):1040–46. Available at: http://doi.org/10.1038/nn.3130.CrossRefGoogle ScholarPubMed
Preuschoff, K., Marius't Hart, B. & Einhäuser, W. (2011) Pupil dilation signals surprise: Evidence for noradrenaline's role in decision making. Frontiers in Neuroscience 5:Article 115. Available at: http://doi.org/10.3389/fnins.2011.00115 CrossRefGoogle ScholarPubMed
Sara, S. J. (2000) Strengthening the shaky trace through retrieval. Nature Reviews Neuroscience 1(3):212–13. Available at: http://doi.org/10.1038/35044575.CrossRefGoogle ScholarPubMed
Sara, S. J. & Bouret, S. (2012) Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76(1):130–41. doi: 10.1016/j.neuron.2012.09.011.CrossRefGoogle ScholarPubMed
Sterpenich, V., D'Argembeau, A., Desseilles, M., Balteau, E., Albouy, G., Vandewalle, G., Degueldre, C., Luxen, A., Collette, F. & Maquet, P. (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. The Journal of Neuroscience 26(28):7416–23. Available at: http://doi.org/10.1523/JNEUROSCI.1001-06.2006.CrossRefGoogle ScholarPubMed
Varazzani, C., San-Galli, A., Gilardeau, S. & Bouret, S. (2015) Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. The Journal of Neuroscience 35(20):7866–77. Available at: http://doi.org/10.1523/JNEUROSCI.0454-15.2015.CrossRefGoogle ScholarPubMed
Yu, A. J. & Dayan, P. (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–92. Available at: http://doi.org/10.1016/j.neuron.2005.04.026.CrossRefGoogle ScholarPubMed