Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:27:40.929Z Has data issue: false hasContentIssue false

Bidirectional synaptic plasticity can explain bidirectional retrograde effects of emotion on memory

Published online by Cambridge University Press:  05 January 2017

Bryan A. Strange
Affiliation:
Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, Universidad Politecnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spainbryan.strange@upm.esana.galarza@ctb.upm.eswww.thestrangelab.org Department of Neuroimaging, Reina Sofia Centre for Alzheimer's Research, Madrid 28031, Spain
Ana Galarza-Vallejo
Affiliation:
Laboratory for Clinical Neuroscience, Centro de Tecnología Biomédica, Universidad Politecnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spainbryan.strange@upm.esana.galarza@ctb.upm.eswww.thestrangelab.org

Abstract

Emotional events can either impair or enhance memory for immediately preceding items. The GANE model explains this bidirectional effect as a glutamate “priority” signal that modulates noradrenaline release depending on arousal state. We argue for an alternative explanation: that priority itself evokes phasic noradrenaline release. Thus, contrasting E-1 memory effects are explained by a mechanism based on the Bienenstock–Cooper–Munro theory.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W. C. & Tate, W. P. (1997) Metaplasticity: A new vista across the field of synaptic plasticity. Progress in Neurobiology 52(4):303–23.Google Scholar
Anderson, A. K., Wais, P. E. & Gabrieli, J. D. E. (2006) Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences of the United States of America 103(5):1599–604. doi: 10.1073/pnas.0506308103.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience 14(7):4467–80.Google Scholar
Bienenstock, E. L., Cooper, L. N. & Munro, P. W. (1982) Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience 2(1):3248.Google Scholar
Diamond, D. M., Park, C. R. & Woodson, J. C. (2004) Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 14(3):281–91.Google Scholar
Dudek, S. M. & Bear, M. F. (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences of the United States of America 89(10):4363–67.Google Scholar
Hu, H., Real, E., Takamiya, K., Kang, M.-G., Ledoux, J., Huganir, R. L. & Malinow, R. (2007) Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131(1):160–73.CrossRefGoogle ScholarPubMed
Kemp, A. & Manahan-Vaughan, D. (2008) β-adrenoreceptors comprise a critical element in learning-facilitated long-term plasticity. Cerebral Cortex 18(6):1326–34.Google Scholar
Kim, J. J. & Yoon, K. S. (1998) Stress: Metaplastic effects in the hippocampus. Trends in Neurosciences 21(12):505509.Google Scholar
Knight, M. & Mather, M. (2009) Reconciling findings of emotion-induced memory enhancement and impairment of preceding items. Emotion 9(6):763–81. doi: 10.1037/a0017281.Google Scholar
Strange, B. A. & Dolan, R. J. (2004) Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences of the United States of America 101(31):11454–58.Google Scholar
Strange, B. A., Hurlemann, R. & Dolan, R. J. (2003) An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proceedings of the National Academy of Sciences of the United States of America 100(23):13626–31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14595032.Google Scholar