Article contents
On the need for discipline in the construction of psychological theories
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1983
References
Amari, S. (1977) Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics 27: 77–87. [DSL]CrossRefGoogle ScholarPubMed
Amari, S. (1982) Competitive and cooperative aspects in dynamics of neural excitation and self-organization. In: Competition and cooperation in neural nets (Lecture Notes in Biomnathematics, No. 45), ed. Amari, S. & Arbib, M. A., pp. 1–28. Berlin: Springer Verlag. [GJD, rSG]CrossRefGoogle Scholar
Amari, S. I. & Arbib, M. A. (1977) Competition and cooperation in neural nets. In: Systems neuroscience, ed. Metzler, J.. New York: Academic Press. [taSG]Google Scholar
Arend, L. E. (1973) Spatial differential and integral operations in human vision: Implications of stabilized retinal image fading. Psychological Review, 80:374–95. [LEA]CrossRefGoogle ScholarPubMed
Arend, L. E., Buehler, J. N. & Lockhead, G. R. (1971) Difference information in brightness perception. Perception and Psychophysics 9: 367–70. [LEA]CrossRefGoogle Scholar
Arend, L. E. Jr, Lange, R. V. & Sandick, B. L. (1981) Nonlocal determination of brightness in spatially periodic patterns. Perception and Psychophysics 29: 310–16. [taSG]CrossRefGoogle ScholarPubMed
Attneave, F. (1954) Some informational aspects of visual perception. Psychological Review 61:183–93. [DHF, taSG]CrossRefGoogle ScholarPubMed
Barlow, H. B. (1972) Optic nerve impulses and Weber's Law. In: Sensory coding, ed. Uttal, W. R.. Boston: Little, Browm. [rSG]Google Scholar
Barlow, H. B. & Levick, W. R. (1965) The mechanism of directionally selective units in rabbit's retina. Journal of Physiology 178: 447–504. [rSG]CrossRefGoogle ScholarPubMed
Baylor, D. A. & Hodgkin, A. L. (1974) Changes in time scale and sensitivity in turtle photoreceptors. Journal of Physiology 242:729–58. [taSG]CrossRefGoogle ScholarPubMed
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974a) The electrical response of turtle cones to flashes and steps of light. Journal of Physiology 242: 685–727. [taSG]CrossRefGoogle ScholarPubMed
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974b) Reconstruction of the electrical responses of turtle cones to flashes and steps of light. Journal of Physiology 242: 759–91. [taSG]CrossRefGoogle ScholarPubMed
Beck, J. (1972) Surface color perception. Ithaca, N.Y.: Cornell University Press. [taSG]Google Scholar
Bergström, S. S. (1966) A paradox in the perception of luminance gradients, I. Scandinavian Journal of Psychology 7: 209–224. [rSG]CrossRefGoogle ScholarPubMed
Bergström, S. S. (1967a) A paradox in the perception of luminance gradients, II. Scandinavian Journal of Psychology 8: 25–32. [rSG]CrossRefGoogle ScholarPubMed
Bergström, S. S. (1967b) A paradox in the perception of luminance gradients, III. Scandinavian Journal of Psychology 8: 33–37. [rSG]CrossRefGoogle Scholar
Bergström, S. S. (1973) A note on the neural unit model for contrast phenomena. Vision Research 13: 2087–2092. [rSG]CrossRefGoogle ScholarPubMed
Blake, R. & Fox, R. (1973) The psychophysical inquiry into binocular summation. Perception and Psychophysics 14: 161–85. [HB]CrossRefGoogle Scholar
Blake, R., Sloane, M. & Fox, R. (1981) Further developments in binocular summation. Perception and Psychophysics 30: 266–76. [taSG]CrossRefGoogle ScholarPubMed
Blakemore, C., Carpenter, R. H. & Georgeson, M. A. (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228:37–39. [taSG]CrossRefGoogle ScholarPubMed
Blank, A. A. (1978) Metric geometry in human binocular perception: Theory and fact: In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [taSG, MW]Google Scholar
Boynton, R. M. (1968) The psychophysics of vision. In: Contemporary theory and research in visual perception, ed. Haber, R. N.. New York: Holt, Rinehart, and Winston. [rSG]Google Scholar
Bridgeman, B. (1971) Metacontrast and lateral inhibition. Psychological Review 78: 528–39. [BB]CrossRefGoogle ScholarPubMed
Bridgeman, B. (1977) A correlational model applied to metacontrast: Reply to Weisstein, Ozog, and Szoc. Bulletin of the Psychonomic Society 10: 85–88. [BB]CrossRefGoogle Scholar
Bridgeman, B. (1978) Distributed sensory coding applied to simulations of iconic storage and metacontrast. Bulletin of Mathematical Biology 40: 605–623. [BB]CrossRefGoogle ScholarPubMed
Buffart, H. (1978) Brightness and contrast. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [HB]Google Scholar
Buffart, H. (1982) Brightness estimation: A transducer function. In: Psychophysical judgment and the process of perception, eds. Geissler, H.-G., Buffart, H. F. J. M., Petzoldt, P. & Zabrodin, Y. M.. Amsterdam: North-Holland Publishing Co. [HB]Google Scholar
Buffart, H., Leeuwenberg, E. & Restle, F. (1981) Coding theory of visual pattern completion. Journal of Experimental Psychology 7: 241–74. [HB]Google ScholarPubMed
Caelli, T. M. (1982) Visual perception: Theory and practice. Oxford: Pergamon Press. [TC]Google Scholar
Caelli, T., Hoffman, W. C. & Lindman, H. (1978) Apparent motion: Self-excited oscillation induced by retarded neuronal flows. In: Formal theories of visual perception, ed. Leeuwenberg, E. L. J. & Buffart, H. F. J. M., New York: Wiley. [taSG]Google Scholar
Carpenter, C. A. & Grossberg, S. (1981) Adaptation and transmitter gating in vertebrate photoreceptors. Journal of Theoretical Neurobiology 1: 1–42. [tarSG]Google Scholar
Carpenter, C. A. & Grossberg, S. (1983) Dynamic models of neural systems: Propagated signals, photoreceptor transduction, and circadian rhythms. In: Oscillations in mathematical biology, ed. Hodgson, J. P. E.. New York: Springer-Verlag. [rSG]Google Scholar
Cogan, A. L., Silverman, C. & Sekuler, R. (1982) Binocular summation in detection of contrast flashes. Perception and Psychophysics 31: 330–38. [taSG]CrossRefGoogle ScholarPubMed
Cohen, M. A. & Grossberg, S. (1983a) Some global properties of binocular resonances: Disparity scaling, filling-in, and figure-ground synthesis. In: Figural synthesis, eds. Caelli, T. & Dodwell, P.. Hillsdale, N.J.: Erlbaum. [tarSG]Google Scholar
Cohen, M. A. & Grossberg, S. (1983b) The dynamics of brightness perception. In preparation. [rSG]Google Scholar
Cohen, M. A. & Grossberg, S. (1983c) Absolute stability of global pattern fbrmation and parallel memory storage in competitive neural networks. Transactions IEEE, in press. [rSG]CrossRefGoogle Scholar
Coren, S. (1969) Brightness contrast as a function of figure-ground relations. Journal of Experimental Psychology 80: 517–24. [SC]CrossRefGoogle ScholarPubMed
Coren, S. (1972) Subjective contours and apparent depth. Psychological Review 79: 359–67. [taSG]CrossRefGoogle ScholarPubMed
Coren, S., Porac, C. & Ward, L. M. (1979) Sensation and perception. New York: Academic Press. [SG]Google Scholar
Crick, F. H. C., Marr, D. & Poggio, T. (1980) An information processing approach to understanding the visual cortex. In: The Cerebral Cortex, Neurosciences Research Program. [WELG]Google Scholar
Curtis, D. W. & Rule, S. J. (1978) Binocular processing of brightness information: A vector-sum model. Journal of Experimental Psychology: Human Perception and Performance 4: 132–43. [HB]Google ScholarPubMed
Dalenoort, G. J. (1982a) In search of the conditions for the genesis of cell assemblies: A study in self-organization. Journal of Social and Biological Structures 5: 161–87. [GJD]CrossRefGoogle Scholar
Dalenoort, G. J. (1982b) Modelling cognitive processes in self-organizing neural networks, an exercise in scientific reduction. In: Biomathematics in 1980, eds. Ricciardi, L. M. & Scott, A. C., Amsterdam: North-Holland, pp. 133–44. [CJD]Google Scholar
Day, R. H. (1972) Visual spatial illusions: A general explanation. Science 175:1335–40. [taSG]CrossRefGoogle ScholarPubMed
de, Lange H. (1957) Attenuation characteristics and phase-shift characteristics of the human fovea-cortex systems in relation to flicker-fusion phenomena. Delft: Technical University. [HB]Google Scholar
Deregowski, J. B. (1973) Illusion and culture. In: Illusions in nature and art, eds. Gregory, R. L. & Gombrich, C. H., pp. 161–192. New York: Scribner's. [SEP]Google Scholar
Dev, P. (1975) Perception of depth surfaces in random-dot stereograms: A neural model. International Journal of Man-Machine Studies 7: 511–28. [tarSG]CrossRefGoogle Scholar
de, Weert Ch. M. M. & Levelt, W. J. M. (1974) Binocular brightness combinations: Additive and nonadditive aspects. Perception and Psychophysics 15: 551–62. [HB]Google Scholar
Diner, D. (1978) Hysteresis in human binocular fusion: A second look. Ph.D. thesis California Institute of Technology, Pasadena. [BJ]Google Scholar
Dodwell, P. C. (1975) Pattern and object perception. In: Handbook of Perception, Vol. 5: Seeing. eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Eijkman, E. C. J., Jongsma, H. J. & Vincent, J. (1981) Two-dimensional filtering, oriented line detectors, and figural aspects as determinants of visual illusions. Perception and Psychophysics 29: 352–58. [taSG]CrossRefGoogle ScholarPubMed
Ellias, S. A. & Grossberg, S. (1975) Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Biological Cybernetics 20: 69–98. [tarSG, DSL]CrossRefGoogle Scholar
Emmert, E. (1881) Grössenverhaltnisse der Nachbilder. Klinische Monatsblatt der Augenheilk unde 19: 443–50. [taSG]Google Scholar
Engel, G. R. (1967) The visual processes underlying binocular brightness summation. Vision Research 7: 753–67. [HB]CrossRefGoogle ScholarPubMed
Engel, G. R. (1969) The autocorrelation function and binocular brightness mixing. Vision Research 9: 1111–30. [HB]CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187: 517–52. [taSG]CrossRefGoogle ScholarPubMed
Fender, D. & Julesz, B. (1967) Extension of Panum's fusional area in binocularly stabilized vision. Journal of the Optical Society of America 57: 819–30. [HB, taSG, BJ]CrossRefGoogle ScholarPubMed
Festinger, L., Coren, S. & Rivers, C. (1970) The effect of attention on brightness contrast and assimilation. American Journal of Psychology 83: 189–207. [SC]CrossRefGoogle ScholarPubMed
Foley, J. M. (1968) Depth, size and distance in stereoscopic vision. Perception and Psychophysics 3: 265–74. [JMF]CrossRefGoogle Scholar
Foley, J. M. (1976) Binocular depth mixture. Vision Research 16: 1263–67. [JMF]CrossRefGoogle ScholarPubMed
Foley, J. M. (1980) Binocular distance perception. Psychological Review 87: 411–34. [JMF, taSG]CrossRefGoogle ScholarPubMed
Foster, D. H. (1978) Visual apparent motion and the calculus of variations. In: Formal Theories of Visual Perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M., pp. 67–82. New York: Wiley. [DHF]Google Scholar
Foster, D. H. (1980) A spatial perturbation technique for the investigation of discrete internal representations of visual patterns. Biological Cyberbetics 38: 159–69. [DHF]CrossRefGoogle ScholarPubMed
Fox, R. & McIntyre, C. (1967) Suppression during binocular fusion of complex targets. Psychonomic Science 8: 143–44. [HB]CrossRefGoogle Scholar
Freeman, W. J. (1973) Cinematic display of spatial structure of EEC and averaged evoked potentials (AEPs) of olfactory bulb and cortex. Electroencephal. Clin. Neurophysiol. 37: 199. [WJF]Google Scholar
Freeman, W. J. (1975) Mass action in the nervous system. New York: Academic Press. [WJF]Google Scholar
Freeman, W. J. (1979a) EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biological Cybernetics 35: 221–34. [WJF]CrossRefGoogle ScholarPubMed
Freeman, W. J. (1979b) Nonlinear dynamics of paleocortex manifested in the olfactory EEC. Biological Cybernetics 35:21–37. [WJF, rSG]CrossRefGoogle Scholar
Freeman, W. J. (1979c) Nonlinear gain mediating cortical stimulus response relations. Biological Cybernetics 33: 237–47. [WJF]CrossRefGoogle ScholarPubMed
Freeman, W. J. (1981) A physiological hypothesis of perception. Perspectives in Biology and Medicine 24: 561–92. [WJF]CrossRefGoogle ScholarPubMed
Freeman, W. J. & Schneider, W. (1982) Changes in spatial patterns of rabbit olfactory EEC with conditioning to odors.Psychophysiology 19: 44–56. [WJF]CrossRefGoogle Scholar
Frisby, J. P. & Julesz, B. (1975) Depth reduction effects in random line stereograms. Perception 4: 151–58. [BJ]CrossRefGoogle Scholar
Gerrits, H. J. M., de, Haan B. & Vendrick, A. J. H. (1966) Experiments with retinal stabilized images: Relations between the observations and neural data. Vision Research 6: 427–40. [rSG]CrossRefGoogle ScholarPubMed
Gerrits, H. J. M. & Timmerman, J. C. M. E. N. (1969) The filling-in process in patients with retinal scotomata. Vision Research 9: 439–42. [rSG]CrossRefGoogle ScholarPubMed
Gerrits, H. J. M. & Vendrik, A. J. H. (1970a) Artificial movements of a stabilized image. Vision Research 10: 1443–56. [HB]CrossRefGoogle ScholarPubMed
Gerrits, H. J. M. & Vendrik, A. J. H. (1970b) Simultaneous contrast, filling-in process and information processing in man's visual system. Experimental Brain Research 11: 411–30. [HB, rSG]CrossRefGoogle ScholarPubMed
Gerrits, H. J. M. & Vendrik, A. J. H. (1972) Eye movements necessary fur continuous perception during stabilization of retinal images. Bibliotheca Ophthalmalogica 82: 339–47. [HB]Google Scholar
Gerrits, H. J. M. & Vendrik, A. J. H. (1974) The influence of stimulus movements on perception in parafoveal stabilized vision. Vision Research 14: 175–80. [HB]CrossRefGoogle ScholarPubMed
Gilchrist, A. L. (1977) Perceived lightness depends on perceived spatial arrangement. Science 195: 185–87. [SEP]CrossRefGoogle ScholarPubMed
Gilchrist, A. L. (1979) The perception of surface blacks and whites. Scientific American 240: 112–24. [taSG, SEP]CrossRefGoogle ScholarPubMed
Glass, L. (1970) Effect of blurring on perception of a simple geometric pattern. Nature 228: 1341–42. [WELG]CrossRefGoogle ScholarPubMed
Glass, L. & Switkes, E. (1976) Pattern recognition in humans: Correlations which cannot be perceived. Perception 5: 67–72. [taSG]CrossRefGoogle ScholarPubMed
Gogel, W. C. (1956) The tendency to see objects as equidistant and its reverse relations to lateral separation. Psychological Monograph 70 (whole no. 411). [taSC, DSL]CrossRefGoogle Scholar
Gogel, W. C. (1965) Equidistance tendency and its consequences. Psychological Bulletin 64: 153–63. [taSG. DSL]CrossRefGoogle ScholarPubMed
Gogel, W. C. (1970) The adjacency principle and three-dimensional visual illusions. Psychonomic Monograph Supplement 3 (whole no. 45), pp. 153–169. [taSG. DSL]Google Scholar
Gonzales-Estrada, M. T. & Freeman, W. J. (1980) Effects of carnosine on olfactory bulb EEG, evoked potentials and DC potentials. Brain Research 202: 373–86. [WJF]CrossRefGoogle Scholar
Graham, N. (1981) The visual system does a crude Fourier analysis of patterns. In: Mathematical psychology and psychophysiology, ed. Grossberg, S.. Providence, R.I.: American Mathematical Society. [taSG]Google Scholar
Graham, N. & Nachmias, J. (1971) Detection of grating patterns containing two spatial frequencies: A test of single-channel and multiple channel models. Vision Research 11: 251–59. [taSG]CrossRefGoogle Scholar
Graham, N., Robson, J. G. & Nachmias, J. (1978) Grating summation in fovea and periphery. Vision Research 18: 816–25. [taSG]CrossRefGoogle ScholarPubMed
Grimson, W. E. L. (1981) A computer implementation of a theory of human stereo vision. Philosophical Transactions of the Royal Society of London B 292: 217–53. [WELG]Google ScholarPubMed
Grimson, W. E. L. (1982a) A computational theory of visual surface interpolation. Philosophical Transactions of the Royal Society of London B 298: 395–427. [WELG. rSG]Google ScholarPubMed
Grimson, W. E. L. (1982b) From images to surfaces: a computational study of the human early visual system. Cambridge, Mass.: MIT Press. [rSG, WELG, KAS]Google Scholar
Grimson, W. E. L. (1983) Surface consistency contraints in vision. In: Computer Graphics and Image Processing (in press). [WELG]CrossRefGoogle Scholar
Grossberg, S. (1968) Some physiological and biochemical consequences of psychological postulates. Proceedings of the National Academy of Sciences 60: 758–65. [taSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1969a) On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks. journal of Statistical Physics 1: 319–50. [rSG]CrossRefGoogle Scholar
Grossberg, S. (1969b) On the serial learning of lists. Mathematical Biosciences 4: 201–53. [rSG]CrossRefGoogle Scholar
Grossberg, S. (1970a) Neural pattern discrimination. Journal of Theoretical Biology 27: 291–337. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1970b) Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, II. Studies in Applied Mathematics 49: 135–66. [rSG]CrossRefGoogle Scholar
Grossberg, S. (1971a) On the dynamics of operant conditioning. Journal of Theoretical Biology 33: 225–55. [rSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1971b) Pavlovian pattern learning by nonlinear neural networks. Proceedings of the National Academy of Sciences 68: 828–31. [rSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1972a) A neural theory of punishment and avoidance, I. Qualitative theory. Mathematical Biosciences 15: 39–67. [rSG]CrossRefGoogle Scholar
Grossberg, S. (1972b) A neural theory of punishment and avoidance, II. Quantitative theory. Mathematical Biosciences 15: 253–85. [rSG]CrossRefGoogle Scholar
Grossberg, S. (1972c) Pattern learning by functional-differential neural networks with arbitrary path weights. In: Delay and functional-differential equations and their applications, ed. Schmitt, K., New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1972d) Neural expectation: Cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classes. Kybernetik 10: 49–57. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1973) Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics 52: 217–57. [tarSG, DSL]CrossRefGoogle Scholar
Grossberg, S. (1974) Classical and instrumental learning by neural networks. In: Progress in theoretical biology, Vol. 3, eds. Rosen, R. & Snell, F.. New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1975) A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology 18: 263–327. [rSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1976a) Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors. Biological Cybernetics 23: 121–34. [rSG, DSL]CrossRefGoogle ScholarPubMed
Grossberg, S. (1976b) Adaptive pattern classification and universal recoding, II: Feedback expectation, olfaction, and illusions. Biological Cybernetics 23: 187–202. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1978c) On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biological Cybernetics 21: 145–59. [DSL]CrossRefGoogle Scholar
Grossberg, S. (1978a) Behavioral contrast in short-term memory: Serial binary memory models or parallel continuous memory models? Journal of Mathematical Psychology 17: 199–219. [taSG]CrossRefGoogle Scholar
Grossberg, S. (1978b) Communication, memory, and development. In: Progress in theoretical biology, Vol. 5, eds. Rosen, R. & Snell, F., New York: Academic Press. [taSG]Google Scholar
Grossberg, S. (1978c) Competition, decision, and consensus. Journal of Mathematical Analysis and Applications 66: 470–93. [tarSG]CrossRefGoogle Scholar
Grossberg, S. (1978d) Decisions, patterns, and oscillations in the dynamics of competitive systems with applications to Volterra-Lotka systems. Journal of Theoretical Biology pp. 101–30. [taSG]CrossRefGoogle Scholar
Grossberg, S. (1978e) A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In: Progress in theoretical biology, Vol. 5, eds. Rosen, R. & Snell, F.. New York: Academic Press. [tarSG]Google Scholar
Grossberg, S. (1980a) Biological competition: Decision rules, pattern formation, and oscillations. Proceedings of the National Academy of Sciences 77: 2338–42. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1980b) How does a brain build a cognitive code? Psychological Review 87: 1–51. [HB, tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1981) Adaptive resonance in development, perception, and cognition. In: Mathematical Psychology and Psychophysiology, ed Grossberg, S.. Providence, R. I.: American Mathematical Society. [tarSG]Google Scholar
Grossberg, S. (1982a) Associative and competitive principles of learning and development: The temporal unfolding and stability of STM and LTM patterns. In: Competition and cooperation in neural networks. eds. Amari, S. I. & Arbib, M.. New York: Springer-Verlag. [rSG]Google Scholar
Grossberg, S. (1982b) A psychophysiological theory of reinforcement, drive, motivation, and habit. Journal of Theoretical Neurobiology 1: 286–369. [rSG]Google Scholar
Grossberg, S. (1982c) The processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychological Review 89: 529–72. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1982d) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Cognition and brain activity, eds. Cohen, J., Karrer, R. & Tueting, P.. New York: New York Academy of Sciences. [tarSG]Google Scholar
Grossberg, S. (1982e) Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Boston: Reidel Press. [tarSG]CrossRefGoogle Scholar
Grossberg, S. (1983a) The adaptive self-organization of serial order in behavior: Speech and motor control. In: Perception of speech and visual form: Theoretical issues, models, and research, eds. Schwab, E. C. & Nusbaum, H. C., New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1983b) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Brain and information: Evoked potential correlates, eds. Karrer, R., Cohen, J. & Tueting, P.. New York: New York Academy of Sciences.Google Scholar
Grossberg, S. & Kuperstein, M. (1983) Adaptive dynamics of the saccadic eye movement system. In preparation. [rSG]Google Scholar
Grossberg, S. & Levine, D. S. (1975) Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks. Journal of Theoretical Biology 53: 341–80. [tarSG, DSL]CrossRefGoogle ScholarPubMed
Grossberg, S. & Pepe, J. (1970) Schizophrenia: Possible dependence of associational span, bowing, and primacy vs. recency on spiking threshold. Behavioral Science 15: 359–62. [rSG]CrossRefGoogle ScholarPubMed
Grossberg, S. & Pepe, J. (1971) Spiking threshold and overarousal effects in serial learning. Journal of Statistical Physics 3: 95–125. [rSG]CrossRefGoogle Scholar
Grünau, M. W. von (1979) The involvement of illusory contours in stroboscopic motion. Perception and Psychophysics 25: 205–08. [taSG]CrossRefGoogle Scholar
Hagen, M. A. & Teghtsoonian, M. (1981) The effects of binocular and motion- generated infarmation on the perception of depth and height. Perception and Psychophysics 30: 257–65. [taSG]CrossRefGoogle ScholarPubMed
Hamada, J. (1976) A mathematical model for brightness and contour perception. Hokkaido Report of Psychology HRP-11–76∓17. [taSG]CrossRefGoogle Scholar
Hamada, J. (1980) Antagonistic and non-antagonistic processes in the lightness perception. Proceedings of XXII International Congress of Psychology, Leipzig, 07 6–12. [tarSG]Google Scholar
Hecht, S. (1934) Vision. II. The nature of the photoreceptor process. In: A handbook of general experimental psychology, ed. Murchison, C.. Worcester, Mass.: Clark University Press. [TI]Google Scholar
Helmholtz, H. L. F. von (1962) Treatise on physiological optics. Southall, J. P. C., trans. New York: Dover. [taSG]Google Scholar
Hepler, N. (1968) Color: A motion-contingent after-effect. Science 162: 376–77. [rSG]CrossRefGoogle Scholar
Hering, E. (1964) Outlines ofa theory of the light sense. Cambridge, Mass.: Harvard University Press. [taSG]Google Scholar
Hermann, A. (1971) The genesis of quantum theory (1899–1913). Nash, C. V., trans. Cambridge, Mass.: MIT Press. [rSG]Google Scholar
Hildreth, E. C. (1980) Implementation of a theory of edge detection. MIT Artificial Intelligence Laboratory Technical Report TR-579. [WELG]Google Scholar
Hochberg, J. (1964) Contralateral suppressive fields of binocular combination. Psychonoinic Science 1: 157–58. [HB]CrossRefGoogle Scholar
Hochberg, J. & Beck, J. (1954) Apparent spatial arrangement and perceived brightness. American Journal of Psychology 47: 263–66. [SEP]Google ScholarPubMed
Holway, A. F. & Boring, E. C. (1941) Determinants of apparent visual size with distance variant. American Journal of Psychology 54: 21–37. [taSG]CrossRefGoogle Scholar
Horn, B. K. P. (1974) Determining lightness from an image. Computer Graphics and Image Processing 3: 277–99. [rSG, WELG]CrossRefGoogle Scholar
Horn, B. K. P. (1977) Understanding image intensities. Artificial Intelligence 8: 201–31. [WELG]CrossRefGoogle Scholar
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London (B) 198: 1–59. [taSG]Google ScholarPubMed
Hurvich, L. M. & Jameson, D. (1955) Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. Journal of the Optical Society of America 45: 602–16. [rSG]CrossRefGoogle ScholarPubMed
Indow, T. (1979) Alleys in visual space. Journal of Mathematical Psychology 19: 221–58. [TI]CrossRefGoogle Scholar
Indow, T. (1983) An approach to geometry of visual space with no a priori mapping functions. Journal of Mathematical Psychology (in press). [TI]Google Scholar
Johansson, G. (1978) About the geometry underlying spontaneous visual decoding of the optical message. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. and Buffart, H. F. J. M.. New York: Wiley. [taSG]Google Scholar
Julesz, B. (1960) Binocular depth perception of computer-generated patterns. Bell System Technical Journal 39: 1125–62. [BJ]CrossRefGoogle Scholar
Julesz, B. (1962) Towards the automation of binocular depth perception (AUTOMAP). Proceedings of the IFIP Congress 62, 27 Aug–1 Sep 1962, pp. 439–444. Amsterdam: North Holland Publishing Co. [BJ]Google Scholar
Julesz, B. (1964) Binocular depth perception without familiarity cues. Science 145: 356–62. [BJ]CrossRefGoogle ScholarPubMed
Julesz, B. (1971a) Binocular depth perception in man—a cooperative model of stereopsis. In: Pattern recognition in biological and technical systems, eds. Grusser, O.-J. & Klinke, B., p 300–315. Proceedings of the German Cybernetic Society, Berlin, 04 6–9, 1970. Berlin-Heidelberg: Springer-Verlag. [BJ]Google Scholar
Julesz, B. (1971b) Foundations of cyclopean perception. Chicago: University of Chicago Press. [HB, taSG, BJ]Google Scholar
Julesz, B. (1974) Cooperative phenomena in binocular depth perception. American Scientist 62: 32–43. Reprinted in: Current trends in psychology: Readings from American Scientist ed. Janis, I. L.. Los Altos, Calif.: W. Kaufmann. [BJ]Google Scholar
Julesz, B. (1978a) Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In: Handbook of sensory physiology, Vol. 8. Perception, eds. Held, R., Leibowitz, H. W. & Teuber, H.-L, pp. 215–256. Berlin- Heidelberg-New York: Springer-Verlag. [BJ]Google Scholar
Julesz, B. (1978b) Perceptual limits of texture descrimination and their implications to figure-ground separation. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [taSG]Google Scholar
Julesz, B. & Chang, J. J. (1976) Interaction between pools of binocular disparity detectors tuned to different disparities. Biological Cybernetics 22: 107–19. [BJ]CrossRefGoogle ScholarPubMed
Just, M. A. & Carpenter, P. A. (1976) Eye fixations and cognitive processes. Cognitive Psychology 8: 441–80. [DHF]CrossRefGoogle Scholar
Kaczmarek, L. K. & Babloyantz, A. (1977) Spatiotemporal patterns in epileptic seizures. Biological Cybernetics 26: 199–208. [taSG]CrossRefGoogle ScholarPubMed
Kaufman, L. (1974) Sight and mind: An introduction to visual perception. New York: Oxford University Press. [taSG]CrossRefGoogle Scholar
Kaufman, L., Bacon, J. & Barroso, F. (1973) Stereopsis without image segregation. Vision Research 13: 137–47. [HB, taSG]CrossRefGoogle ScholarPubMed
Klatt, D. H. (1980) Speech perception: A model of acoustic-phonetic analysis and lexical access. In: Perception and production of fluent speech. ed. Cole, R. A.. Hillsdale, N.J.: Erlbaum. [taSG]Google Scholar
König, A. & Brodhun, E. (1889) Experimentelle Untersuchungen Über die psychophysische Fundamentalformel in Bezug auf den Gesichtssinn. Sitzungsberichte der preussischen Akademie der Wissenschaften, Berlin 27: 641–44. [HB]Google Scholar
Kulikowski, J. J. (1978) Limit of single vision in stereopsis depends on contour sharpness. Nature 275: 126–27. [taSG]CrossRefGoogle ScholarPubMed
Land, E. H. (1977) The retinex theory of color vision. Scientific American 237: 108–28. [LEA, taSG]CrossRefGoogle ScholarPubMed
Land, E. H. & McCann, J. J. (1971) Lightness and retinex theory. Journal of the Optical Society of America 61: 1–11. [LEA, WELG]CrossRefGoogle ScholarPubMed
Lanze, M., Weisstein, N. & Harris, J. R. (1982) Perceived depth vs. structural relevance in the object-superiority effect. Perception and Psychophysics 31: 376–82. [taSG]CrossRefGoogle ScholarPubMed
Leake, B. & Annines, P. (1976) Effects of connectivity on the activity of neural not models. Journal of Theoretical Biology 58: 337–63. [TC]CrossRefGoogle Scholar
Leeuwenberg, E. (1982) The perception of assimilation and brightness contrast. Perception and Psychophysics 32: 345–52. [HB]CrossRefGoogle ScholarPubMed
Legge, C. E. & Foley, J. M. (1980) Contrast masking in human vision. Journal of the Optical Society of America 70: 1458–71. [JMF]CrossRefGoogle ScholarPubMed
Logge, C. E. & Rubin, G. S. (1981) Binocular interactions in suprathreshold contrast perception. Perception and Psychophysics 30: 49–61. [raSG]CrossRefGoogle Scholar
Leshowitz, B., Taub, H. B. & Raab, D. H. (1968) Visual detection of signals in the presence of continuous and pulsed backgrounds. Perception and Psychophysics 4: 207–13. [DL]CrossRefGoogle Scholar
Lettvin, J. Y. (1981) “Filling out the forms”: An appreciation of Hubel and Wiesel. Science 214: 518–20. [taSG]Google Scholar
Levelt, W. J. M. (1965) On binocular rivalry. Soesterberg, Thu Netherlands: Institute for Perception, RVO-TNO. [HB, tarSG]Google Scholar
Levine, D. S. & Crossberg, S. (1976) Visual illusions in neural networks: Line neutralization, tilt aftereffect, and angle expansion. Journal of Theoretical Biology 61: 477–504. [tarSG, DSL]CrossRefGoogle ScholarPubMed
Logan, B. F. Jr, (1977) Information in the zero-crossings of bandpass signals. Bell System Technical Journal 56: 487–510. [WELG]CrossRefGoogle Scholar
Luneberg, H. K. (1947) Mathematical analysis of binocular vision. Princeton, N.J.: Princeton University Press. [taSG, MW]Google Scholar
Luneberg, R. K. (1950) The metric of binocular visual space. Journal of the Optical Society of America 60: 637–42. [TI]Google Scholar
McCourt, M. E. (1982) A spatial frequency dependent grating-induction effect. Vision Research 22: 119–34. [JMF]CrossRefGoogle ScholarPubMed
Marr, D. (1974) The computation of lightness by the primate retina. Vision Research 14: 1377. [rSG]CrossRefGoogle ScholarPubMed
Marr, D. (1976) Early processing of visual information. Philosophical Transactions of the Royal Society of London (B) 275: 483–524. [WELC, KAS]Google ScholarPubMed
Marr, D. (1977) Artificial Intelligence–a personal view. Artificial Intelligence, 9: 37–48. [HB, WELG, KAS]CrossRefGoogle Scholar
Marr, D. (1978) Representing visual insformation. Lectures on Mathematics in the Life Sciences 10: 101–80. [KAS]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. San Fraiscisco: W. H. Freeman. [BB, WELG]Google Scholar
Marr, D. & Hildreth, E. (1980) Theory of edge detection. Proceedings of the Royal Society of London (B) 207: 187–217. [taSG, WELG, KAS]Google ScholarPubMed
Marr, D. & Poggio, T. (1976) Cooperative computation of stereo disparity. Science 194: 283–87. [tarSG]CrossRefGoogle ScholarPubMed
Marr, D. & Poggio, T. (1977) From understanding computation to underatanding neural circuitry. Neurosciences Research Progress Bulletin 15: 470–88. [KAS]Google Scholar
Marr, D. & Poggio, T. (1979) A computational theory of human stereo vision. Proceedings of the Royal Society of London (B) 204:301–28. [JMF, taSG, WELG, KAS]Google ScholarPubMed
Maudarbocus, A. Y. & Ruddock, K. H. (1973) Nous-linearity of visual signals in relation to shape-sensitive adaptation processes. Vision Research 13: 1713–37. [DHF]CrossRefGoogle Scholar
Mayhew, J. E. W. & Frisby, J. P. (1981) Psychophysical and computatiousal studies towards a theory of human stereopsis. Artificial Intelligence 17: 349–85. [WELG]CrossRefGoogle Scholar
Miller, R. F. (1979) The neuroisal basis of ganglion-cell receptive-field organization and the physiology of amacrine cells. In: The neuroscience fourth study program, ed. Schmitt, F. O.. Cambridge, Mass.: MIT Press. [rSG]Google Scholar
Minor, A. V., Flerova, C. I. & Byzov, A. L. (1969) Integral evoked potentials of single neurons in the frog olfactory bulb (in Russian). Neurophysiologica 1: 269–78. [WJF]Google Scholar
Mori, T. (1982) Apparent motious path composed of a serial concatenation of translations and rotations. Biological Cybernetics 44: 31–34. [DHF]CrossRefGoogle ScholarPubMed
Nachmias, J. & Kocher, E. C. (1970) Visual detection and discrimination of luminance increments. Journal of the Optical Society of America 60: 382–89. [DL]CrossRefGoogle ScholarPubMed
Newell, A. (1980) Harpy, production systems, and human cognition. In: Perception and production of fluent speech. ed. Cole, R.. Hilisdale, N.J.: Erlbaum. [taSG]Google Scholar
O'Brien, V. (1958) Contour perception, illusion and reality. Journal of the Optical Society of America 48:112–19. [SC, taSG]CrossRefGoogle Scholar
Osgood, C. E., Suci, G. J. & Tannenbaum, P. H. (1957) The measurement of meaning. Urbana: University of Illinois. [taSG]Google Scholar
Poggio, T. (1980) Neurons sensitive to random-dot stereograms in areas 17 and 18 of rhesus monkey. Society for Neuroscience Abstracts (11) 6. [BJ]Google Scholar
Poggio, T. (1982) Trigger features or Fourier analysis in early vision: A new point of view. In: The recognition of pattern and form, lecture notes in biomathematics, ed. Albrecht, D.. New York: Springer, 44:88–99. [WELG]CrossRefGoogle Scholar
Pollen, D. A. & Ronner, S. F. (1981) Phase relationships between adjacent simple cells in the visual cortex. Science 212:1409–11. [rSG]CrossRefGoogle ScholarPubMed
Pollen, D. A. & Ronner, S. F. (1982) Spatial computation performed by simple and complex cells in the visual cortex of the cat. Vision Research 22:101–18. [rSG]CrossRefGoogle ScholarPubMed
Pulliam, K. (1981) Spatial frequency analysis of three-dimensional vision. Proceedings of the Society of Photo-Optical Instrumentation Engineers 303:71–77. [JMF, rSG]Google Scholar
Raaijmakers, J. G. W. & Shiffrin, R. M. (1981) Search of associative memory. Psychological Review 88:93–134. [taSG]CrossRefGoogle Scholar
Rall, W. (1977) Core conductor theory and cable properties of neurons. In: Handbook of physiology: The nervous system, vol. I, Part I, ed. Kandel, E. R., pp. 39–97. Bethesda, Md.: American Physiological Society. [rSG]Google Scholar
Rashevsky, N. (1968) Mathematical biophysics. Chicago: University of Chicago Press. [TI]Google Scholar
Ratliff, F. (1965) Mach bands: Quantitative studies on neural networks in the retina. New York: Holden-Day. [BB, taSG]Google Scholar
Rauschecker, J. P. J., Campbell, F. W. & Atkinson, J. (1973) Colour opponent neurones in the human visual system. Nature 245:42–45. [taSG]CrossRefGoogle ScholarPubMed
Richards, V. (1975) Visual space perception. In: Handbook of perception, Vol. 5: Seeing, eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Richards, W. & Marr, D. (1981) Computational algorithms for visual processing. M.I.T. Artificial Intelligence Lab. [taSG]Google Scholar
Richards, W. & Miller, J. F. Jr, (1971) The corridor illusion. Perception and Psychophysics 9:421–23. [taSG]CrossRefGoogle Scholar
Richter, J. & Ullman, S. (1982) A model for the temporal organization of Xand Y-type receptive fields in the primate retina. Biological Cybernetics 43:127–45. [rSG, WELG]CrossRefGoogle Scholar
Robson, J. G. (1975) Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In: Handbook of perception (Vol. 5), eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Robson, J. G. & Graham, N. (1981) Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research 21:409–18. [taSG]CrossRefGoogle ScholarPubMed
Rock, I. (1977) In defense of unconscious inference. In: Stability and constancy in visual perception, ed. Epstein, W.. New York: Wiley. [HB]Google Scholar
Rodieck, R. W. & Stone, J. (1965) Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 28:833–49. [taSG]CrossRefGoogle ScholarPubMed
Rushton, W. A. (1965) Visual adaptation. The Ferrier Lecture, 1962. Proceedings of the Royal Society of London (B) 162:20–46. [WJF]Google Scholar
Sakata, H. (1981) Mechanism of Craik-O'Brien effect. Vision Research 21:693–99. [rSG]CrossRefGoogle ScholarPubMed
Schriever, W. (1925) Experimentelle studien über stereokopische sehen. Zeitschrift fuer Psychologie 96:113–70. [SEP]Google Scholar
Schrödinger, E.Müller-Pouillets Lehrbuch der Physik 11. Auflage, Zweiter Band. Brannschweig. [HB]Google Scholar
Schwartz, E. L. (1980) Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research 20:645–69. [taSG]CrossRefGoogle ScholarPubMed
Sekuler, R. (1975) Visual motion perception. In: Handbook of perception, Vol. 5, eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [rSG]Google Scholar
Shepard, R. N. (1980) Multidimensional scaling, tree-fitting, and clustering. Science 210:390–98. [taSG]CrossRefGoogle ScholarPubMed
Shepard, R. N. & Chipman, S. (1970) Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology 1:1–17. [BB]CrossRefGoogle Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701–03. [DHF]CrossRefGoogle ScholarPubMed
Shepherd, G. M. (1972) Synaptic organization of the mammalian olfactory bulb. Physiological Review 52:864–917. [WJF]CrossRefGoogle ScholarPubMed
Shipley, T. (1965) Visual contours in homogeneous space. Science 150:348–50. [taSG]CrossRefGoogle ScholarPubMed
Singer, W. (1982) The role of attention in developmental plasticity. Human Neurobiology 1:41–43. [taSG]Google ScholarPubMed
Smith, A. T. & Over, R. (1979) Motion aftereffect with subjective contours. Perception and Psychophysics 25:95–98. [taSG]CrossRefGoogle ScholarPubMed
Sperling, G. (1970) Binocular vision: A physical and a neural theory. American Journal of Psychology 83:461–534. [GJD, taSG, BJ]CrossRefGoogle Scholar
Sperling, G. (1981) Mathematical models of binocular vision. In: Mathematical psychology and psychophysiology, ed. Crossberg, S.. Providence, R.I.: American Mathematical Society. [taSG]Google Scholar
Sperling, G. & Sondhi, M. M. (1968) Model for visual luminance discrimination and flicker detection. Journal of the Optical Society of America 58:1133–45. [taSG, DSL]CrossRefGoogle ScholarPubMed
Stromeyer, C. F. III & Mansfield, R. J. W. (1970) Colored after-effects produced with moving edges. Perception and Psychophysics 7:108–14. [rSG]CrossRefGoogle Scholar
Tschermak-Seysenegg, A. von (1952) Introduction to physiological optics. Boeder, P., trans. Springfield, Ill.: C. C. Thomas. [taSG]Google Scholar
Tynan, P. & Sekuler, R. (1975) Moving visual phantom: A new contour completion effect. Science 188:951–52. [JMF, taSG]CrossRefGoogle ScholarPubMed
van den Brink, G. & Keemink, C. J. (1976) Luminance gradients and edge effects. Vision Research 16:155–59. [HB]CrossRefGoogle ScholarPubMed
van Nes, F. L. (1968) Experimental studies in spatio-temporal contrast transfer by the human eye. Utrecht: University. [HB]Google Scholar
van Nes, F. L. & Bouman, M. A. (1965) The effects of wavelength and luminance on visual modulation transfer. Excerpta Medica International Congress Series 125:183–92. [HB]Google Scholar
van Tuijl, H. & Leeuwenberg, E. (1979) Neon color spreading and structural information measures. Perception and Psychophysics 25:269–84. [HB]CrossRefGoogle ScholarPubMed
von Békésy, G. (1968) Mach- and Hering-type lateral inhibitioms in vision. Vision Research 8:1483–99. [rSG]CrossRefGoogle ScholarPubMed
Wallach, H. & Adams, P. A. (1954) Binocular rivalry of achromatic colors. American Journal of Psychology 67:513–16. [taSG]CrossRefGoogle ScholarPubMed
Watson, A. S. (1978) A Riemann geometric explanation of the visual illusions and figural after-effects. In: Formal theories of visual perception, eds. Leeuwenberg, E. C. J. & Buffart, H. F. T. M.. New York: Wiley. [taSG]Google Scholar
Weisstein, N. (1980) The joy of Fourier analysis. In: Visual coding and adaptability, ed. Harris, C. S.. Hillsdale, N.J.: Erlbaum. [rSG]Google Scholar
Weisstein, N. & Harris, C. S. (1980) Masking and the unmasking of distributed representations in the visual system. In: Visual coding and adaptability, ed. Harris, C. S.. Hillsdale, N.J.: Erlbaum. [rSG]Google Scholar
Weisstein, N., Harris, C. S., Berbaum, K., Tangney, J. & Williams, A. (1977) Contrast reduction by small localized stimuli: Extensive spatial spread of above-threshold orientation-selective masking. Vision Research 17:341–50. [rSG]CrossRefGoogle ScholarPubMed
Weisstein, N. & Maguire, W. (1978) Computing the next step: Psychophysical measures of represemstation and interpretation. In: Computer vision systems, eds. Riseman, E. & Hanson, A.. New York: Academic Press. [rSG]Google Scholar
Weisstein, N., Maguire, W. & Berbaum, K. (1976) Visual phantomns produced by moving subjective contours generate a motion aftereffect. Bulletin of the Psychonomic Society 8:240 (abstract). [rSG]Google Scholar
Weisstein, N., Maguire, W. & Berbaum, K. (1977) A phantom-motion aftereffect. Science 198:955–98. [JMF, taSG]CrossRefGoogle ScholarPubMed
Weisstein, N., Maguire, W. & Williams, M. C. (1978) Moving phantom contours and the phantom-motion aftereffect vary with perceived depth. Bulletin of the Psychonomnic Society 12:248 (abstract). [rSG]Google Scholar
Weisstein, N., Matthews, M. & Berbaum, K. (1974) Illusory contours can mask real contours. Bulletin of the Psychonomic Society 4:266 (abstract). [rSG]Google Scholar
Werblin, F. S. (1971) Adaptation in a vertebrate retina: lmstracellular recordings in Necturus. Journal of Neurophysiology 34:228–41. [tarSG]CrossRefGoogle Scholar
Werner, H. (1937) Dynamics in binocular depth perception. Psychological Monograph (whole no. 218). [taSG]CrossRefGoogle Scholar
Wilson, H. R. (1980) A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38:171–78. [JMF]CrossRefGoogle ScholarPubMed
Wilson, H. R. & Bergen, J. R. (1979) A four-mechamsism model for spatial vision. Vision Research 19:19–32. [tarSG]CrossRefGoogle ScholarPubMed
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12:1–24. [DBL]CrossRefGoogle ScholarPubMed
Weisstein, N., Maguire, W. & Berbaum, K. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80. [DSL]Google Scholar
Winston, P. H. (1979) MIT progress in understanding images. Proceedings: Image Understanding Workshop, Palo Alto, California, pp. 25–36. [WELG]Google Scholar
Wyatt, H. J. & Daw, N. W. (1975) Directionally sensitive ganglion cells in the rabbit retina: Specificity for stimulus direction, size, and speed. Journal of Neurophysiology 38:613–26. [rSG]CrossRefGoogle ScholarPubMed
Zucker, S. W. (1980) Motion and the Mueller-Lyer illusion. McGill Department of Electrical Engineering, Technical Report 80∓2R. [WELG]Google Scholar
- 3
- Cited by