Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:31:00.124Z Has data issue: false hasContentIssue false

Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-type Interarrival Times

Published online by Cambridge University Press:  17 April 2015

F. Avram
Affiliation:
Dept. of Mathematics, Université de Pau, France. E-mail: Floris.Avram@univ-pau.fr
M. Usábel
Affiliation:
Dept. of Business Adm., Universidad Carlos III de Madrid, Spain. E-mail: usabel@emp.uc3m.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion.

From a theoretical point of view, we also provide below a generalization of Thorin’s formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interarrival times.

In the case when the claims distribution is of phase-type as well, we obtain also an alternative formula for the single Laplace transform in time (or “exponentially killed probability’’), in terms of the roots with positive real part of the Lundberg’s equations, which complements Asmussen’s representation (1992) in terms of the roots with negative real part.

Type
Articles
Copyright
Copyright © ASTIN Bulletin 2004

References

Asmussen, S. (1984) Approximations for the probability of ruin within finite time. Scandinavian Actuarial Journal, 3157.Google Scholar
Asmussen, S. (1987) Applied Probability and Queues. Wiley, New York.Google Scholar
Asmussen, S. and Rolski, (1991) Computational Methods in risk theory: a matrix-algorithmic approach. Insurance: Mathematics and Economics, 10, 259274.Google Scholar
Asmussen, S. (1992) Phase-type representations in random walk and queueing problems. The Annals of Probability, 20(2), 772789 CrossRefGoogle Scholar
Asmussen, S. and Bladt, M. (1996) Renewal theory and queueing algorithms for matrix-exponential distributions. Matrix-Analytic Methods in Stochastic Models (Alfa, A.S & Chkravarty, S., eds.), 313341 Google Scholar
Asmussen, S. (2000). Ruin Probabilities. World Scientific.10.1142/2779CrossRefGoogle Scholar
Asmussen, S. and Hojgaard, B. (1999) Approximations for finite time ruin probabilities in the renewal model. Scandinavian Actuarial Journal, 99, 106119.10.1080/03461239950132606CrossRefGoogle Scholar
Asmussen, S., Avram, F. and Usábel, M. (2002). Erlangian approximations for finite-horizonruin probabilities. ASTIN Bulletin 32.CrossRefGoogle Scholar
Avram, F. and Usábel, M. (2001) Finite time ruin probabilities with one Laplace inversion. To appear in Insurance: Mathematics and Economics.Google Scholar
Avram, F., Pistorius, M. and Usábel, M. (2003) The two barriers ruin problem via a WienerHöpf decomposition approach. Annals of the University of Craiova, Math. Comp. Sci. Series, 30, 19.Google Scholar
Bohman, H. (1971) Ruin probabilities. Skandinavisk Aktuarietidskrift, 159163.Google Scholar
Bohman, H. (1974) Fourier Inversion-Distribution functions-Long tails. Scand. Actuarial Journal, 4345 CrossRefGoogle Scholar
Bohman, H. (1975) Numerical inversion of characteristic functions. Scan. Act. Journal, 121124 CrossRefGoogle Scholar
Bux, W. and Herzog, U. (1977). The Phase Concept: Approximation of Measured Data and Performance Analysis. In: Chandy, K.M. and Reiser, M.. eds., Computer Performance. North-Holland, Amsterdam, 2338.Google Scholar
Cramèr, H. (1955) Collective Risk Theory. Jubille Volume of Skandia., F. Google Scholar
Dickson, D. and Egidio dos Reis, A. (1996) On the distribution of the duration of negative surplus. Scandinavian Actuarial Journal, 148164.10.1080/03461238.1996.10413969CrossRefGoogle Scholar
Egidio dos Reis, A. (1993). How long is the surplus below zero? Insurance: Mathematics and Economics, 12, 2338.Google Scholar
Egidio dos Reis, A. (2000). On the moments of ruin and recovery times. Insurance: Mathematics and Economics, 27, 331343.Google Scholar
Gerber, H., Goovaerts, M. and Kaas, R. (1987) On the probability and severity of ruin. ASTIN Bulletin 17, 151163.CrossRefGoogle Scholar
Johnson, M.A. and Taaffe, M.R. (1985) Matching Moments to Phase Distributions: Mixture of Erlang distributions of common order. Stochastic Models 6, 259281.CrossRefGoogle Scholar
Lang, A and Arthur, J.L. (1994) Parameter Approximation for Phase type Distributions. Technical Report, Oregon Sate University, Corvallis.Google Scholar
Mitchell, K. and Van de Liefvoort, A. (2000) Constructing a Matrix Exponential Distribution Using Moment Matching, In Approximation Models of Feed-Forward G/G/1/N Queuing Networks with Correlated Arrivals. Computer Science Telecommunications Program 5100 Rockill, Kansas City.Google Scholar
Neuts, M. (1975) Probability distibutions of phase-type. Liber Amicorum Professor Emeritus Florin, H., Dep. of Mathematics, University of Louvain, Belgium, 173206.Google Scholar
Neuts, M. (1977) Algorithms for the waiting time distribution under various queue disciplines in the M/G/1 queue with service time distribution of phase-type. TIMS Studies in the Management Science, 7, 177197 Google Scholar
Piessens, R. (1969) New quadrature formulas for the numerical inversion of Laplace transforms. BIT 9, 351361 Google Scholar
Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999) Stochastic Processes for Insurance and Finance. Wiley, Chichester.10.1002/9780470317044CrossRefGoogle Scholar
Seal, H. (1971) Numerical calculation of the Bohman-Esscher family of convolution-mixed negative binomial distribution functions. Mitt. Verein. schweiz. Versich.-Mathr. 71, 7194.Google Scholar
Seal, H. (1974) The numerical calculation of U(w,t), the probability of non-ruin in an interval (0,t). Scan. Act. Journal, 121139.CrossRefGoogle Scholar
Seal, H. (1977) Numerical inversion of characteristic functions. Scan. Act. Journal, 4853.10.1080/03461238.1977.10405625CrossRefGoogle Scholar
Stanford, D. and Stroinski, K. (1994) Recursive methods for computing finite-time ruin probabilities for phase-type distributed claim sizes. Astin Bulletin 24(2), 235254.CrossRefGoogle Scholar
Stanford, D., Stroinski, K. and Lee, K. (2000) Ruin probabilities based at claim instants for some non-Poisson claim processes. Insurance: Mathematics and Economics, 26, 251267.Google Scholar
Thorin, O. (1970) Some remarks on the ruin problem in case the epochs of claims form a renewal process. Skandinavisk Aktuarietidskrift, 2950.Google Scholar
Thorin, O. (1971) Further remarks on the ruin problem in case the epochs of claims form a renewal process. Skandinavisk Aktuarietidskrift, 1438, 121142.Google Scholar
Thorin, O. (1973) The ruin problem in case the tail of a distribution is completely monotone. Skandinavisk Aktuarietidskrift, 100119.Google Scholar
Thorin, O. (1977) Ruin probabilities prepared for numerical calculation. Scandinavian Actuarial Journal.CrossRefGoogle Scholar
Thorin, O. (1982) Probabilities of Ruin. Scandinavian Actuarial Journal, 65102.CrossRefGoogle Scholar
Thorin, O. and Wikstad, N. (1973) Numerical evaluation of ruin probabilities for a finite period. ASTIN Bulletin VII:2, 138153.Google Scholar
Tseggai, A. (2000) General Solutions of ultimate ruin probabilities. Master in Actuarial Science Thesis. Heriot-Watt University.Google Scholar
Usábel, M. (1999) Calculating multivariate ruin probabilities via Gaver-Syehfest inversion technique. Insurance: Mathematics and Economics, 25, 133142.Google Scholar
Usábel, M. (2001) Ultimate ruin probabilities for generalized gamma convolutions claim sizes. ASTIN Bulletin, 31(1), 6383.10.2143/AST.31.1.994CrossRefGoogle Scholar
Wikstad, N. (1971) Exemplifications of ruin probabilities. ASTIN Bulletin, VI, part 2.Google Scholar
Wikstad, N. (1977) How to calculate Ruin probabilities according to the classical Risk Theory. Scand. Actuarial Journal. CrossRefGoogle Scholar
Willmot, G. (1998) On a class of approximations for ruin and waiting time probabilities. Oper. Res. Lett. 22, 2732 CrossRefGoogle Scholar
Willmot, G. (1999) A Laplace transform representation in a class of renewal queueing and risk process. J. Appl. Prob. 36, 570584.CrossRefGoogle Scholar
Willmot, G. (2000) On the evaluation of the conditional distribution of the deficit at the ruin time. Scandinavian Actuarial Journal, 100(1) 6379.CrossRefGoogle Scholar