Skip to main content Accessibility help
×
Home

A Nonhomogeneous Poisson Hidden Markov Model for Claim Counts

  • Yi Lu (a1) and Leilei Zeng (a2)

Abstract

We propose a nonhomogeneous Poisson hidden Markov model for a time series ofclaim counts that accounts for both seasonal variations and random fluctuations in the claims intensity. It assumes that the parameters of the intensity function for the nonhomogeneous Poisson distribution vary according to an (unobserved) underlying Markov chain. This can apply to natural phenomena that evolve in a seasonal environment. For example, hurricanes that are subject to random fluctuations (El Niño-La Niña cycles) affect insurance claims. The Expectation-Maximization (EM) algorithm is used to calculate the maximum likelihood estimators for the parameters of this dynamic Poisson hidden Markov model. Statistical applications of this model to Atlantic hurricanes and tropical storms data are discussed.

Copyright

References

Hide All
Albert, P.S. (1991) A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics 47, 13711381.
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716723.
Altman, R.M. and Petkau, A.J. (2005) Application of hidden Markov models to multiple sclerosis lesion count data. Statistics in Medicine 24, 23352344.
Baum, L.E., Petrie, T., Soules, G. and Weiss, N. (1970) A maximization technique occurring in the statistical estimation for probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41, 164171.
Beard, R.E., Pentikäinen, T. and Pesonen, E. (1984) Risk Theory 3rd ed. Chapman & Hall, London.
Bulla, J. and Berzel, A. (2008) Computational issues in parameter estimation for stationary hidden Markov models. Comp. Stat. 23(1), 118.
Cole, J.D. and Pfaff, S.R. (1997) A climatology of tropical cyclones affecting the Texas coast during El Niño/non-El Niño years: 1990-1996. Technical Attachment SR/SSD 97-37, National Weather Service Office, Corpus Christi, Texas, (http://www.srh.noaa.gov/topics/attach/html/ssd97-37.htm).
Cooper, B. and Lipsitch, M. (2004) The analysis of hospital infection data using hidden Markov models. Biostatistics 5(2), 223237.
Cox, D.R. (1981) Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics, 8(2), 93115.
Daykin, C.D., Pentikäinen, T. and Pesonen, M. (1994) Practical Risk Theory for Actuaries. Chapman & Hall, London.
Freeland, R.K. and McCabe, B.P.M. (2004) Analysis of low count time series data by Poisson autoregression. Journal of Time Series Analysis 25(5), 701722.
Freeland, R.K., Latour, A. and Oraichi, D. (2006) Integer-valued GARCH process. Journal of Time Series Analysis 27(6), 923942.
Garrido, J. and Lu, Y. (2004) On double periodic non-homogeneous Poisson processes. Bulletin of the Association of Swiss Actuaries 2, 195212.
Gart, J.J. and Pettigrew, H.M. (1970) On the conditional moments of the k-statistics for the Poisson distribution. Biometrika 57(3), 661664.
Grandell, J. (1991) Aspects of Risk Theory. Springer-Verlag, Berlin.
Gray, W.M. (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasibiennial oscillation inl uences. Monthly Weather Review 112, 16491668.
Heinen, A. (2003) Modelling time series count data: an autoregressive conditional Poisson model. Center for Operations Research and Econometrics (CORE) Discussion Paper No. 2003-63, University of Louvain, Belgium.
Hóhle, M. and Paul, M. (2008) Count data regression charts for the monitoring of surveillance time series. Computational Statistics and Data Analysis 52, 43574368.
Hughes, J.P. and Guttorp, P. (1999) A non-homogeneous hidden Markov model for precipitation occurrence. Applied Statistics 48, 1530.
Juang, B.H. and Rabiner, L.R. (1991) Hidden Markov models for speech recognition. Technometrics 33, 251272.
Jung, R.C., Kukuk, M. and Liesenfeld, R. (2006) Time series of count data: modelling, estimation and diagnostics. Computational Statistics and Data Analysis 51, 23502364.
Katz, R.W. (1981) On some criteria for estimating the order of a Markov chain. Technometrics 23(3), 243249.
Katz, R.W. (2002) Stochastic modeling of hurricane damage. Journal of Applied Meteorology 41, 754762.
Landreneau, D. (2001) Atlantic tropical storms and hurricanes affecting the United States: 1899-2002. NOAA Technical Memorandum NWS SR-206 (Updated through 2002), National Weather Service Office, Lake Charles, Louisiana, (http://www.srh.noaa.gov/lch/research/tropical.htm).
Leroux, B.G. and Puterman, M.L. (1992) Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics 48, 545558.
Lu, Y. and Garrido, J. (2005) Doubly periodic non-homogeneous Poisson models for hurricane data. Statistical Methodology 2, 1735.
Lu, Y. and Garrido, J. (2007) Regime-switching periodic models for claim counts. North American Actuarial Journal 10, 235248.
MacDonald, I.L. and Zucchini, W. (1997) Hidden Markov and Other Models for Discrete-valued Time Series. Chapman & Hall, London.
MacKay, R.J. (2002) Estimating the order of a hidden Markov model. The Canadian Journal of Statistics 30(4), 573589.
McKenzie, E. (2003) Discrete variate time series. In Stochastic Processes: Modelling and Simulation (eds Shanbhag, D.N. and Rao, C.R.). Amsterdam: Elsevier, 573606.
Paroli, R., Redaelli, G. and Spezia, L. (2000) Poisson hidden Markov models for time series of overdispersed insurance counts. ASTIN Colloquium, Porto Cervo, Italy.
Pielke, R.A. Jr., Gratz, J., Landsea, C.W., Collins, D., Saunders, M.A. and Musulin, R. (2008) Normalized hurricane damage in the United States: 1900-2005. Natural Hazards Review 9, 2942.
Pielke, R.A. Jr., and Landsea, C.W. (1999) La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc. 80, 20272033.
Quddus, M.A. (2008) Time series count data models: an empirical application to traffic accidents. Accident Analysis and Prevention 40, 17321741.
Rao, C.R. and Chakravarti, I.M. (1956) Some small sample tests of significance for a Poisson distribution. Biometrics 12, 264282.
Rydén, T. (1994) Parameter estimation for Markov modulated Poisson processes. Stochastic Models 10, 795829.
Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics 6(2), 461464.
Trenberth, K.E. (1997) The definition of El Niño. Bull. Amer. Meteor. Soc. 78, 27712777.
Weiss, C.H. (2008) Thinning operations for modelling time series of counts – a survey. Advances in Statistical Analysis 92(3), 319341.
Weiss, C.H. (2009) Modelling time series of counts with overdispersion. Statistical Methods and Applications 18, 507519.
Wu, C.F.J. (1983) On the convergence properties of the EM algorithm. The Annals of Statistics 11, 95103.
Zeger, S.L. (1988) A regression model for time series of counts. Biometrika 75(4), 621629.
Zucchini, W. and MacDonald, I.L. (2009) Hidden Markov Models for Time Series: An Introduction Using R, 2nd Ed. Chapman and Hall/CRC, London.

Keywords

A Nonhomogeneous Poisson Hidden Markov Model for Claim Counts

  • Yi Lu (a1) and Leilei Zeng (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed