Skip to main content Accessibility help
×
Home

Link between exposure of fish (Solea solea) to PAHs and metabolites: Application to the “Erika” oil spill

  • Hélène Budzinski (a1), Olivier Mazéas (a1) (a2), Jacek Tronczynski (a2), Yves Désaunay (a3), Gilles Bocquené (a2) and Guy Claireaux (a4)...

Abstract

An analytical method consisting in enzymatic deconjugation, solid phase extraction and purification, and gas chromatography/mass spectrometry analysis after derivatization was used in this study to quantify Polycyclic Aromatic Hydrocarbon (PAH) metabolites in the bile of fish. The method has been applied in a laboratory experiment studying the fate of pyrene in basin containing soles. This study has allowed the identification of 1-hydroxypyrene as the single metabolite in bile after enzymatic deconjugation. In a second time, 1-hydroxypyrene has been used as a biomarker of exposure in the case of the “Erika” oil spill. This biomonitoring was successful in demonstrating the exposure of juvenile soles to PAHs present in the “Erika” fuel oil.

Copyright

Corresponding author

References

Hide All
[1] Aas, E., Beyer, J., Goksøyr, A., 2000, Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signa interpretation. Biomarkers 5, 9-23.
[2] Ariese, F., Kok, S.J., Verkaik, M., Gooijer, C., Velthorst, N.H., Hofstraat, J.W., 1993, Synchronous fluorescence spectrometry of fish bile: A rapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol. 26, 273-286.
[3] Baumann P.C., 1989, PAH, metabolites, and neoplasia in feral fish populations. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 269-290.
[4] Beyer, J., Sandvik, M., Hylland, K., Fjeld, E., Egaas, E., Aas, E., Skåre, J.U., Goksøyr, A., 1996, Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sørfjorden, Norway. Aquat. Toxicol. 36, 75-98.
[5] Boehm, P.D., Page, D.S., Burns, W.A., Bence, A.E., Mankiewicz, P.J., Brown, J.S., 2001, Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environ. Sci. Technol. 35, 471-479.
[6] Budzinski, H., Letellier, M., Garrigues, P., Le Menach, K., 1999, Optimisation of the microwave-assisted extraction in open cell of PAHs from soils and sediments – Study of moisture effect. J. Chromatogr. A. 837, 187-200.
[7] De Flora, S., Bagnasco, M., Zanacchi, P., 1991, Genotoxic, carcinogenic and teratogenic hazards in the marine environment, with special reference to the Mediterranean Sea. Mutation Res. 258, 285320.
[8] Huggett, R.J., Stegeman, J.J., Page, D.S., Parker, K.R., Woodin, B., Brown, J.S., 2003, Biomarkers in Fish from Prince William Sound and the Gulf of Alaska: 1999-2000. Environ. Sci. Technol. 37, 4043-4051.
[9] Jewett, J.C., Dean, T.A., Woodin, B.R., Hoberg, M.K., Stegeman, J.J., 2002, Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Mar. Environ. Res. 54, 21-48.
[10] Krahn, M.M., Myers, M., Burrows, D.G., Malins, D.C., 1984, Determination of metabolites of xenobiotics in bile of fish from polluted waterways. Xenobiotica 14, 633-646.
[11] Krahn, M.M., Rhodes, L.D., Myers, M.S., Moore, L.K., MacLeod, W.D., Malins, D.C., 1986a, Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys vetulus) from Puget Sound, Washington. Arch. Environ. Contam. Toxicol. 15, 61-67.
[12] Krahn, M.M., Kittle, L.J., McLeod, W.D., 1986b, Evidence for exposure of fish to oil spilled into the Columbia River. Mar. Environ. Res. 20, 291-298.
[13] Krahn, M.M., Burrows, D.G., MacLeod, W.D., Malins, D.C., 1987, Determination of individual metabolites of aromatic compounds in hydrolysed bile of English sole (Parophrys vetulus) from Puget Sound, Washington. Arch. Environ. Contam. Toxicol. 16, 511-522.
[14] Krahn, M.M., Burrows, D.G., Ylitalo, G.M., Brown, D.W., Wigren, C.A., Collier, T.K., Chan, S.-L., Varanasi, U., 1992, Mass spectrometric analysis for aromatic compounds in bile of fish sampled after the Exxon Valdez oil spill. Environ. Sci. Technol. 26, 116-126.
[15] Krahn, M.M., Ylitalo, G.M., Buzitis, J., Bolton, J.L., Wigren, C.A., Chan, S.-L., Varanasi, U., 1993, Analyses for petroleum-related contaminants in marine fish and sediments following the Gulf oil spill. Mar. Pollut. Bull. 27, 285-292.
[16] Lin, E.L.C., Cormier, S.M., Torsella, J.A., 1996, Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: comparison with HPLC-fluorescent detection. Ecotoxicol. Environ. Saf. 35, 16-23.
[17] Luthe, G., Stroomberg, G.J., Ariese, F., Brinkman, U.A.T., van Straalen, N.M., 2002, Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods. Environ. Toxicol. Pharmacol. 12, 221-229.
[18] Marty, G.D., Hoffmann, A., Okihiro, M.S., Hepler, K., Hanes, D., 2003, Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Mar. Environ. Res. 56, 569-584.
[19] McDonald, SJ., Kennicutt, M.C., Brooks, J.M., 1992, Evidence of polycyclic aromatic hydrocarbon (PAH) exposure in fish from the Antarctic peninsula. Mar. Pollut. Bull. 25, 313-317.
[20] Meador J.P., 2003, Bioaccumulation of PAHs in marine invertebrates. In: Douben P.E.T. (Ed.), PAHs: An Ecotoxicological Perspective. Wiley, England, pp. 147-172.
[21] Moore M.N., Livingstone D.R., Widdows J., 1989, Hydrocarbons in marine molluscs: Biological effects and ecological consequences. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 185-202.
[22] Neff J.M., 1979, Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates and biological effects. London, Applied Sciences Publishers.
[23] Tissot B.P., Welte D.H., 1978, Petroleum formation and occurrence. A new approach to oil and gas exploration. Springer-Verlag, Berlin Heidelberg.
[24] van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003, Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
[25] Varanasi U., Stein J.E., Nishimoto M., 1989, Biotransformation and disposition of PAH in fish. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 93-149.

Keywords

Related content

Powered by UNSILO

Link between exposure of fish (Solea solea) to PAHs and metabolites: Application to the “Erika” oil spill

  • Hélène Budzinski (a1), Olivier Mazéas (a1) (a2), Jacek Tronczynski (a2), Yves Désaunay (a3), Gilles Bocquené (a2) and Guy Claireaux (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.