Skip to main content Accessibility help

Identification and quantification of two species of oyster larvae using real-time PCR

  • Ana Sánchez (a1), Javier Quinteiro (a2), Manuel Rey-Méndez (a2), Ricardo Isaac Perez-Martín (a1) and Carmen González Sotelo (a1)...


A real-time polymerase chain reaction (PCR) assay was developed for the identification and quantification of two oyster species: Ostrea edulis and Crassostrea gigas. Two sets of primers and TaqMan-MGB probes were designed, based on partial sequences of the 16S rRNA gene. An amplification positive control system was also located in the 18S rRNA gene sequences. Closely related species of oysters and other bivalves, known to co-occur with the target species in European waters, were used to test the assay for cross-reactivity. The assay designed was specific for the target species and no signal or no significant signal was detected for all non-target species tested. The high sensitivity of this method was demonstrated since it is possible to detect just one larva (150–200 μm size) of each species even when it is present with others. Furthermore, this assay provided an acceptable quantification of the number of spiked larvae (1, 10 and 100 larvae) in plankton samples employing a standard curve for larvae.


Corresponding author

a Corresponding author:


Hide All

Supporting information is only available in electronic form at



Hide All
[1]André, C.,Lindegarth, M.,Jonsson, P.R.,Sundberg, P., 1999, Species identification of bivalve larvae using random amplified polymorphic (RAPD): differentiation between Cerastoderma edule and C. lamarcki. J. Mar. Biol. Assoc. UK 79, 563565.
[2] Applied Biosystems, 2005, Real-Time PCR Systems. Chemistry Guide.
[3]Bell, J.L.,Grassle, J.P., 1998, A DNA probe for identification of larvae of the commercial surfclam (Spisula solidissima). Mol. Mar. Biol. Biotechnol. 7, 127137.
[4]Bendezu, I.F.,Slater, J.W.,Carney, B.F., 2005, Identification of Mytilus spp. and Pecten maximus in Irish waters by standar PCR of the 18S rDNA gene and multiplex PCR of the 16S rDNA gene. Mar. Biotechnol. 7, 687696.
[5]Dias, P.J.,Sollelis, L.,Cook, E.J.,Piertney, S.B., Davies, I.M.,Snow,, M., 2008, Development a real-time PCR assay for detection of Mytilus species specific alleles: Application to a sampling survey in Scotland. J. Exp. Mar. Biol. Ecol. 367, 253258.
[6]Figueiras, F.G.,Labarta, U.,Fernandez-Reiriz, M.J., 2002, Coastal upwelling, primary production and mussel growth in the Rias Baixas of Galicia. Hydrobiologia 484, 121131.
[7]Garland, E.D.,Zimmer, C.A., 2002, Techniques for the identification of bivalve larvae. Mar. Ecol. Prog. Ser. 225, 299310.
[8]Goodwin, J.D.,North, E.W.,Thompson, C.M., 2014, Evaluating and improving a semi-automated image analysis technique for identifying bivalve larvae. Limnol. Oceanogr. Methods 12, 548562.
[9]Hall, T.A., 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 9598.
[10]Hare, M.P.,Palumbi, S.R.,Butman, C.A., 2000, Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Mar. Biol. 137, 953961.
[11]Henzler, C.M.,Hoaglund, E.A.,Gaines, S.D., 2010, FISH-CS- A rapid method for counting and sorting species of marine zooplankton. Mar. Ecol. Prog. Ser. 410, 111.
[12]Hosoi, M.,Hosoi-Tanabe, S.,Sawada, H.,Ueno, M.,Toyohara, H.,Hayashi, I., 2004, Sequence and polymerase chain reaction-restriction fragment length polymorphism analysis of the large subunit rRNA gene of bivalve: Simple and widely applicable technique for multiple species identification of bivalve larva. Fish. Sci. 70, 629637.
[13]Hosoi-Tanabe, S.,Sako, Y., 2005, Species-specific detection and quantification of toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR assay. Mar. Biotechnol. 7, 506514.
[14]Hurwood, D.A.,Heasman, M.P.,Mather, P.B., 2005, Gene flow, colonisation and demographic history of the flat oyster Ostrea angasi. Mar. Freshw. Res. 56, 10991106.
[15]Iglesias, D.,Rodríguez, L.,Montes, J.,Conchas, R.F.,Pérez, J.L.,Fernández, M.,Guerra, A., 2005, Estudio de viabilidad del cultivo de ostra rizada Crassostrea gigas (Thunberg, 1793) en diferentes rías gallegas. Primeros resultados biológico-productivos. Bol. Inst. Esp. Oceanogr. 21, 293309.
[16]Johnson, M.,Zaretskaya, I.,Raytselis, Y.,Merezhuk, Y.,McGinnis, S.,Madden, T.L., 2008, NCBI BLAST: a better web interface. Nucleic Acid Res. 36 (Suppl. 2), W5-W9.
[17]Jozefowicz, C.J., ÓFoighil, D., 1998, Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Mol. Phyl. Evol. 10, 426435.
[18]Kenchington, E.,Bird, C.J.,Osborne, J.,Reith, M., 2002, Novel repeat elements in the nuclear ribosomal RNA operon of the flat oysters O. edulis C. Linnaeus, 1758 and O. angasi Sowerby, 1871. J. Shellfish Res. 21, 697705.
[19] Le Goff-Vitry, M.C.,Chipman, A.R.,Comtet, T., 2007, In situ hybridization on whole larvae: a novel method for monitoring bivalve larvae. Mar. Ecol. Prog. Ser. 343, 161172.
[20]Lorenzo-Abalde, S.,González-Fernández, A., De Miguel Villegas, E.,Fuentes, J., 2005, Two monoclonal antibodies for the recognition of Mytilus spp. larvae: Studies on cultured larvae and tests on plankton samples. Aquaculture 250, 736747.
[21] Mirella da Silva, P.,Fuentes, J.,Villalba, A., 2005, Growth, mortality and disease susceptibility of oyster Ostrea edulis families obtained from brood stocks of different geographical origins, through on-growing in the Ria de Arousa (Galicia, NW Spain). Mar. Biol. 147, 965977.
[22] Palumbi S.R., Martin A., Romano S., McMillan W.O., Stice L., Grabowski G., 1991, The simple Fool’s Guide to PCR. Department of Zoology, University of Hawaii, Honolulu.
[23]Pan, M.,McBeath, A.J.A.,Hay, S.J.,Pierce, G.J.,Cunningham, C.O., 2008, Real-time PCR assay for detection and relative quantification of Liocarcinus depurator larvae from plankton samples. Mar. Biol. 153, 859870.
[24]Patil, J.G.,Gunasekera, R.M.,Deagle, B.E.,Bax, N.J., 2005, Specific detection of Pacific oyster (Crassostrea gigas) larvae in plankton samples using nested polymerase chain reaction. Mar. Biotech. 7, 1120.
[25]Paugam, A., Le Pennec, M.,Geneviéve, A.F., 2000, Immunological recognition of marine bivalve larvae from plankton samples. J. Shellfish Res. 19, 325331.
[26]Paugam, A., Le Pennec, M.,Marhic, A.,Geneviéve, A.F., 2003, Immunological in situ determination of Pecten maximus larvae and their temporal distribution. J. Mar. Biol. Assoc. UK 83, 10831093.
[27]Pérez, D.,Lorenzo-Abalde, S.,González-Fernández, A.,Fuentes, J., 2009, Immunodetection of Mytilus galloprovincialis larvae using monoclonal antibodies to monitor larval abundance on the Galician coast: Optimization of the method and comparison with identification by morphological traits. Aquaculture 294, 8692.
[28]Quinteiro, J.,Pérez-Diéguez, L.,Sánchez, A., Pérez-Martín, R.I.,Sotelo, C.G,Rey-Méndez, M., 2011, Quantification of manila clam Ruditapes philippinarum (Adams & Reeve, 1850) larvae based on SYBR Green real-time polymerase chain reaction. J. Shellfish Res. 30, 791796.
[29]Reece, K.S.,Cordes, J.F.,Stubbs, J.B.,Hudson, K.L.,Francis, E.A., 2008, Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Mar. Biol. 153, 709721.
[30]Smith, K.F.,Wood, S.A.,Mountfort, D.O.,Cary, S.C., 2012, Development of a real-time PCR assay for the detection of the invasive clam, Corbula amurensis, in environmental samples. J. Exp. Mar. Biol. Ecol. 412, 5257.
[31]Thompson, J.D.,Gibson, T.J.,Plewniak, F.,Jeanmougin, F.,Higgins, D.G., 1997, The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res. 25, 48764882.
[32]Thompson, C.M.,Hare, M.P.,Gallager, S.M., 2012, Semi-automated image analysis for the identification of bivalve larvae from a Cape Cod estuary. Limnol. Oceanogr. Methods 10, 538554.
[33]Toro, J.E., 1998, Molecular identification of four species of mussels from southern Chile by PCR-based nuclear markers: The potential use in studies involving planktonic surveys. J. Shellfish Res. 17, 12031205.
[34]Vadopalas, B.,Bouma, J.V.,Jackels, C.R.,Friedman, C.S., 2006, Application of real-time PCR for simultaneous identification and quantification of larval abalone. J. Exp. Mar. Biol. Ecol. 334, 219228.
[35]Wang, S.,Bao, Z.,Zhang, L.,Li, N.,Zhan, A.,Guo, W.,Wang, X.,Hu, J., 2006, A new strategy for species identification of planktonic larvae: PCR-RFLP analysis of the internal transcribed spacer region of ribosomal DNA detected by agarose gel electrophoresis or DHPLC. J. Plankton Res. 28, 375384.
[36]Wight, N.A.,Suzuki, J.,Vadopalas, B.,Friedman, C.S., 2009, Development and optimization of quantitative PCR assays to aid Ostrea lurida carpenter 1864 restoration efforts. J. Shellfish Res. 28, 3341.
[37] Yuan J.S., Reed A., Chen F., Stewart Jr. C.N., 2006, Statistical analysis of real-time PCR data. BMC Bioinformatics 7.


Identification and quantification of two species of oyster larvae using real-time PCR

  • Ana Sánchez (a1), Javier Quinteiro (a2), Manuel Rey-Méndez (a2), Ricardo Isaac Perez-Martín (a1) and Carmen González Sotelo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed