Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T18:51:59.086Z Has data issue: false hasContentIssue false

Flow cytometric determination of genome size in European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), thinlip mullet (Liza ramada), and European eel (Anguilla anguilla)

Published online by Cambridge University Press:  15 March 2005

Stefano Peruzzi
Affiliation:
IFREMER, Laboratoire de Recherche Piscicole de Méditerranée, Chemin de Maguelone, 34250 Palavas-les-Flots, France Norwegian College of Fishery Science, University of Tromsø, 9037 Tromsø, Norway
Béatrice Chatain
Affiliation:
IFREMER, Laboratoire de Recherche Piscicole de Méditerranée, Chemin de Maguelone, 34250 Palavas-les-Flots, France
Bruno Menu
Affiliation:
IFREMER, Laboratoire de Recherche Piscicole de Méditerranée, Chemin de Maguelone, 34250 Palavas-les-Flots, France
Get access

Abstract

The nuclear DNA content in Dicentrarchus labrax, Sparus aurata, Liza ramada, and Anguilla anguilla, was measured by flow cytometric analysis. Male human leukocytes were used as internal reference cells. Nucleated fish erythrocytes were stained simultaneously to human leukocytes with a staining buffer containing propidium iodide (PI). Nuclear DNA contents of target species were estimated in relation to an assigned value of 7.0 pg DNA for male human leukocytes. The DNA content/nucleus (±CI) was 1.55 ± 0.02 pg for D. labrax, 1.90 ± 0.03 pg for S. aurata, 1.57 ± 0.02 pg for L. ramada, and 2.43 ± 0.04 pg for A. anguilla. Intraspecific DNA content variations ranged from 0-9% and averaged around 4% in all taxa. The results did not evidence significant differences in genome size between males and females in either D. labrax or L. ramada. / Anguilla anguilla

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfei, L., Cavallo, D., Eleuteri, P., Grollino, M.G., Colombari, P.T., Ferri, A., Onali, A., De Vita, R., 1996, Nuclear DNA content in Salmo fibreni in Lake Posta Fibreno, Italy. J. Fish Biol. 48, 1051-1058.
Birstein, V.J., Poletaev, A.I., Goncharov, B.F., 1993, DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14, 377-383. CrossRefPubMed
Cano, J., Thode, G., Alvarez, M.C., 1981, Analisis cariologico de seis especies de esparidos del Mediterraneo. Genet. Iber. 33, 181-188.
Cano, J., Pretel, A., Melendez, S., Garcia, F., Caputo, V., Fenocchio, A.S., Bertollo, L.A.C., 1996, Determination of early stages of sex chromosome differentiation in the sea bass Dicentrarchus labrax L. (Pisces: Perciformes). Cytobios 87, 45-59.
Carvalho, M.L., Oliveira, C., Foresti, F., 1998, Nuclear DNA content of thirty species of neotropical fishes. Genet. Mol. Biol. 21, 47-54. CrossRef
Castaño, A., Sanchez, P., Llorente, M.T., Carballo, M., de la Torre, A., Muñoz, M.J., 2000, The use of alternative systems for the ecotoxicological screening of complex mixtures on fish populations. Sci. Total Environ. 247, 337-348. CrossRef
Cataudella, S., Civitelli, M.V., Capanna, E., 1973, The chromosomes of some Mediterranean teleosts: Scorpaenidae, Serranidae, Labridae, Blenniidae, Gobiidae (Pisces-Scorpaeniformes, Perciformes). Boll. Zool. 40, 385-389. CrossRef
Chiarelli, B., Ferrantelli, O., Cucchi, C., 1969, The karyotype of some teleostean fish obtained by tissue culture in vitro. Experientia 25, 426-427. CrossRef
Ciudad, J., Cid, E., Velasco, A., Lara, J.M., Aijón, J., Orfao, A., 2002, Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48, 20-25. CrossRefPubMed
Cui, J., Ren, X., Yu, Q., 1991, Nuclear DNA content variation in fishes. Cytologia 56, 425-429.
Galett, P.M. Jr., Aguilar, C.T., Molina, W.F., 2000, An overview of marine fish cytogenetics. Hydrobiologia 420, 55-62. CrossRef
Guerrero, R.D., Shelton, W.L., 1974, An aceto-carmine squash method of sexing juveniles fishes. Progress. Fish Cult. 36, 56. CrossRef
Hardie, D.C., Hebert, P.D.N., 2003, The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46, 683-706. CrossRef
Harrell, R.M., Van Heukelem, W., Kerby, J.H., 1995, Triploid induction validation techniques: A comparison of karyotyping, flow cytometry, particle size analysis and staining nucleolar organizer regions. Aquaculture 137, 159-160. CrossRef
Hinegardner R., 1968, Evolution of cellular DNA content in Teleost fishes. Am. Nat. 102 (928), 517-523.
Hinegardner R., Rosen D.E., 1972, Cellular DNA content and the evolution of Teleostean fishes. Am. Nat. 106 (951), 621-644.
Jenner, N.K., Ostrander, G.K., Kavanagh, T.J., Livesey, J.C., Shen, M.W., Kim, S.C., Holmes, E.H., 1990, A flow cytometric comparison of DNA content and glutathione levels in hepatocytes of English sole (Parophyrs vetulus) from areas of differing water quality. Arch. Environ. Contamin. Toxicol. 19, 807-815. CrossRef
Lamatsch, D.K., Steinlein, C., Schmid, M., Schartl, M., 2000, Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39, 91-95. 3.0.CO;2-4>CrossRefPubMed
Lockwood, S.F., Bickham, J.W., 1991, Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content. Cytometry 12, 260-267. CrossRef
Lockwood, S.F., Derr, J.N., 1992, Intra and inter-specific genome-size variation in the Salmonidae. Cytogen. Cell Genet. 59, 303-306. CrossRef
Peruzzi, S., Chatain, B., 2000, Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass (Dicentrarchus labrax L.). Aquaculture 189, 23-37. CrossRef
Peruzzi, S., Chatain, B., 2003, Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.). Genetica 119, 225-228. CrossRef
Quéro J.C., Vayne J.J., 1997, Les poissons de mer des pêches françaises. Delachaux et Niestlé Edn., Lausanne, Switzerland.
Rossi, A.R., Gornung, E., Crosetti, D., 1997, Cytogenetic analysis of Liza ramada (Pisces, Perciformes) by different staining techniques and fluorescent in situ hybridization. Heredity 79, 83-87. CrossRef
Sola, L., Cataudella, S., 1978, Prime osservazioni sulla cariologia degli sparidi Mediterranei. Boll. Zool. 45, 242.
Sola, L., Camerini, B., Cataudella, S., 1984, Cytogenetics of Atlantic eels: C- and G-banding, nucleolus organizer regions, and DNA content. Cytogenet. Cell Genet. 38, 206-210. CrossRef
Tiersch, T.R., Chandler, R.W., Wachtel, S.S., Elias, S., 1989a, Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10, 706-710. CrossRefPubMed
Tiersch, T.R., Chandler, R.W., Kallman, K., Wachtel, S.S., 1989b, Estimation of nuclear DNA content by flow cytometry in fishes of the genus Xiphophorus. Comp. Biochem. Physiol. B 94, 465-468. CrossRef
Van Eenennaam, A.L., Van Eenennaam, J.P., Medrano, J.F., Doroshov, S.I., 1996, Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147, 177-189. CrossRef
Wiberg, U.H., 1983, Sex determination in the European eel (Anguilla anguilla L.). Cytogenet. Cell Genet. 36, 589-598. CrossRef
Zanuy, S., Carrillo, M., Felip, A., Rodríguez, L., Blázquez, M., Ramos, J., Piferrer, F., 2001, Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture 202, 187-203. CrossRef