Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T00:42:03.150Z Has data issue: false hasContentIssue false

Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 2- Importance of water movement and temperature during egg incubation

Published online by Cambridge University Press:  25 June 2012

Jacques Slembrouck
IRD, UMR 226 – ISEM, BP 5095, 34196 Montpellier Cedex 05, France Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Agus Priyadi
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Asep Permana
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Rendy Ginanjar
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Etienne Baras
IRD, UMR 226 – ISEM, BP 5095, 34196 Montpellier Cedex 05, France
Darti Satyani
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Balai Penelitian dan Pengembangan Budidaya Ikan Hias (BP2BIH), Jl. Perikanan No. 13, 41152 Depok, Indonesia
Laurent Pouyaud
IRD, UMR 226 – ISEM, BP 5095, 34196 Montpellier Cedex 05, France
Marc Legendre*
IRD, UMR 226 – ISEM, BP 5095, 34196 Montpellier Cedex 05, France
a Corresponding author:
Get access


In comparison to older life stages, the embryonic stages of fishes generally have narrow tolerance ranges for environmental conditions, as regards water quality, temperature and mechanical shocks. The knowledge of these factors is indispensable to appraise the threats brought about by climate or anthropogenic changes upon their resilience, and to define adequate ways of incubating their eggs for an efficient propagation of the species under controlled conditions. Clown loach eggs have a narrow thermal tolerance range in comparison to other tropical and temperate fishes. Hatching occurs at 22–30 °C, and non-deformed larvae can only be obtained at 23.8–30.2 °C. Furthermore, the thermal tolerance of any particular progeny was found dependent on the maintenance temperature of the female parent, thereby making the actual tolerance no broader than 4.5 °C. The (log-log) relationship between the duration of the incubation period and temperature was characterized by a shallow slope, which is more typical of coldwater fishes, as is a narrow thermal tolerance range. On the other hand, clown loach hatched more rapidly (20 h at 26 °C) than predicted by existing models on the basis of water temperature and egg diameter, a feature that is shared by other warmwater fishes producing eggs that undergo a strong swelling process (about three times the ova diameter in clown loach). Clown loach embryos are strongly sensitive to mechanical shocks, but their development is not viable either in protracted steady state conditions, in absence of water movement, as they develop various deformities (e.g. pericardial oedema). This is thought to originate from a hypoxic microenvironment around the embryo, as a consequence of an oxygen gradient developing inside and outside the egg, since the boundary diffusion layer is not refreshed by water movement. This issue is worsened by strong egg swelling and incubation at warm temperature.

Research Article
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Baras, E., Slembrouck, J., Priyadi, A., Satyani, D., Pouyaud, L., Legendre, M., 2012, Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 3-Ontogeny, ecological and aquacultural implications. Aquat. Living Resour. 25, 119130. CrossRefGoogle Scholar
Billard, R., 1976, Effet de l’agitation des ovules et des oeufs de truite arc-en-ciel sur la fécondabilité et le début du développement embryonnaire. Bull. Fr. Piscic. 262, 511. CrossRefGoogle Scholar
Burt, J.M., Hinch, S.G., Patterson, D.A., 2011, The importance of parentage in assessing temperature effects on fish early life history : a review of the experimental literature. Rev. Fish Biol. Fish. 21, 377406. CrossRefGoogle Scholar
Burt, J.M., Hinch, S.G., Patterson, D.A., 2012, Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Oncorhynchus nerka. J. Fish Biol. 80, 444462. CrossRefGoogle Scholar
Berezovsky, V.A., Goida, E.A., Mukalov, I.O., Sushko, B.S., 1979, Experimental study of oxygen distribution in Misgurnus fossilis eggs. Fiziol. Zh. (Kiev) 25, 379389 (in Russian). Google Scholar
Chernoff, N., Rogers, J.M., 2010, Hypoxia and the edema syndrome : elucidation of a mechanism of teratogenesis. Birth Defects Res. 89, 300303. CrossRefGoogle ScholarPubMed
Ciuhandu, C.S., Wright, P.A., Goldberg, J.I., Stevens, E.D., 2007, Parameters influencing dissolved oxygen in the boundary layer of rainbow trout (Oncorhynchus mykiss) embryos and larvae. J. Exp. Biol. 210, 14351445. CrossRefGoogle ScholarPubMed
Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C., Longino, J.T., 2008, Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258261. CrossRefGoogle ScholarPubMed
Cooper, M.S., Virta, V.C., 2007, Evolution of gastrulation in the ray-finned (Actinopterygian) fishes. J. Exp. Zool. (Mol. Dev. Evol.) 308B, 591608. CrossRefGoogle Scholar
Davenport, J., Lönning, S., 1980, Oxygen uptake in developing eggs and larvae of the cod, Gadus morhua L. J. Fish Biol. 16, 249256. CrossRefGoogle Scholar
Dethlefsen, V., von Westernhagen, H., Tüg, H., Hansen, P.D., Dizer, H., 2001, Influence of solar ultraviolet-B on pelagic fish embryos : osmolality, mortality and viable hatch. Helgol. Mar. Res. 55, 4555. CrossRefGoogle Scholar
Fonds, M., Van Buurt, G., 1974, The influence of temperature and salinity on survival and development of goby eggs (Pisces, Gobiidae). Hydrobiol. Bull. (Amsterdam) 8, 110116. CrossRefGoogle Scholar
Forrester, C.R., 1964, Laboratory Observations on Embryonic Development and Larvae of the Pacific Cod (Gadus macrocephalus Tilesius). J. Fish. Res. Board Can. 21, 916. CrossRefGoogle Scholar
Gerhart, J.C., Danilchick, M., Doniach, T., Roberts, S., Rowning, B., Stewart, R., 1989, Cortical rotation of the Xenopus egg : consequences for the anteroposterior pattern of embryonic dorsal development. Development Suppl. 107, 3751. Google ScholarPubMed
Giorgi, A.E., Congleton, J.L., 1984, Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish. 10, 1527. CrossRefGoogle Scholar
Grabowski, C.T., 1970, Embryonic oxygen deficiency – a physiological approach to analysis of teratological mechanisms. Adv. Teratol. 4, 125167. Google Scholar
Haylor, G.S., Mollah, M.F.A., 1995, Controlled hatchery production of African catfish, Clarias gariqinus : the influence of temperature on early development. The influence of temperature on early development. Aquat. Living Resour. 8, 431438. CrossRefGoogle Scholar
Herzig, A., Winkler, H., 1986, The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J. Fish Biol. 28, 171181. CrossRefGoogle Scholar
Holt, G.J., Arnold, C.R., 1983, Effects of ammonia and nitrite on growth and survival of red drum eggs and larvae. Trans. Am. Fish. Soc. 112, 314318. 2.0.CO;2>CrossRefGoogle Scholar
Humpesch, U.H., 1985, Inter- and intra-specific variation in hatching success and embryonic development of five species of salmonids and Thymallus thymallus. Archiv Hydrobiol. 104, 129144. Google Scholar
Ishimatsu, A., Kikkawai, T., Hayashi, M., Lee, K.-S., Kita, J., 2004, Effects of CO2 on marine fish : larvae and adults. J. Oceanogr. 60, 731741. CrossRefGoogle Scholar
Jensen, J.O.T., Alderdice, D.F., 1983, Changes in mechanical shock sensitivity of coho salmon (Oncorhynchus kisutch) eggs during incubation. Aquaculture 32, 303312. CrossRefGoogle Scholar
Kamler E., 1992, Early life history of fish. an energetic approach. London, Chapman and Hall, Fish and Fisheries Series 4.
Kamler, E., Keckeis, H., Bauer-Nemeschkal, E., 1998, Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J. Fish Biol. 53, 658682. Google Scholar
Kinne, O., Kinne, E.M., 1962, Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations. Can. J. Zool. 40, 231253. CrossRefGoogle Scholar
Klimogianni, A., Koumoundouros, G., Kaspiris, P., Kentouri, M., 2004, Effect of temperature on the egg and yolk-sac larval development of common pandora, Pagellus erythrinus. Mar. Biol. 145, 10151022. CrossRefGoogle Scholar
Kranenberg, S., Muller, M., Gielen, J.L.W., Verhagen, J.H.G., 2000, Physical constraints on body size in teleost embryos. J. Theor. Biol. 204, 113133. CrossRefGoogle Scholar
Krogh A., 1941, Comparative Physiology of Respiratory Mechanisms. University of Pennsylvania Press, Philadelphia.
Lee, S.L.C., Rouhi, P., Jensen, L.D., Zhang, D., Ji, H., Hauptmann, G., Ingham, P., Cao, Y., 2009, Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc. Natl. Acad. Sci. USA 106, 1948519490. CrossRefGoogle Scholar
Legendre, M., Teugels, G.G., 1991, Development and thermal tolerance of eggs in Heterobranchus longifilis, and comparison of larval developments of H. longifilis and Clarias gariepinus (Teleostei, Clariidae). Aquat. Living Resour. 4, 227240. CrossRefGoogle Scholar
Legendre, M., Slembrouck, J., Subagja, J., Kristanto, A.H., 2000, Ovulation rate, latency period and ova viability after GnRH- or hCG-induced breeding in the Asian catfish Pangasius hypophthalmus (Siluriformes, Pangasiidae). Aquat. Living Resour. 13, 145151. CrossRefGoogle Scholar
Legendre, M., Satyani, D., Subandiyah, S., Sudarto, , Pouyaud, L., Baras, E., Slembrouck, J., 2012, Biology and culture of the clown loach Chromobotia macracanthus (Cypriniformes, Cobitidae) : 1-Hormonal induced breeding, unusual latency response and egg production in two populations from Sumatra and Borneo Islands. Aquat. Living Resour. 25, 95108. CrossRefGoogle Scholar
Lucas M.C., Baras E., 2001, Migration of Freshwater Fishes. Oxford, Blackwell Sci. Ltd.
Mauguit, Q., Gennotte, V., Becco, C., Baras, E., Vandewalle, N., Vandewalle, P., 2010, Ontogeny of swimming movements in the catfish Clarias gariepinus. Open Fish Sci. J. 3, 1629. CrossRefGoogle Scholar
McDowall, R.M., 2009, Early hatch : a strategy for safe downstream larval transport in amphidromous gobies. Rev. Fish Biol. Fish. 19, 18. CrossRefGoogle Scholar
Miller, S.C., Reeb, S.E., Wright, P.A., Gillis, T.E., 2008, Oxygen concentration in the water boundary layer next to rainbow trout (Oncorhynchus mykiss) embryos is influenced by hypoxia exposure time, metabolic rate, and water flow. Can. J. Fish. Aquat. Sci. 65, 21702177. CrossRefGoogle Scholar
Ng, P.K.L., Tan, H.H., 1997, Freshwater fishes of Southeast Asia : potential for the aquarium fish trade and conservation issues. Aquar. Sci. Conserv. 1, 7990. CrossRefGoogle Scholar
O’Brien, R.N., Visaisouk, S., Raine, R., Alderdice, D.F., 1978, Natural convection : a mechanism for transporting oxygen to incubating salmon eggs. J. Fish. Res. Board Can. 35, 13161321. CrossRefGoogle Scholar
Olivier K., 2001, The ornamental fish market. FAO/GLOBEFISH Research Programme 67. FAO, Rome.
Pauly, D., Pullin, R.S.V., 1988, Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size. Environ. Biol. Fish. 22, 261271. CrossRefGoogle Scholar
Pinder, A.W., Feder, M.E., 1990, Effect of boundary layers on cutaneous gas exchange. J. Exp. Biol. 143, 6780. Google Scholar
Pörtner, H.O., Peck, M.A., 2010, Climate change effects on fishes and fisheries : towards a cause-and-effect understanding. J. Fish Biol. 77, 17451779. CrossRefGoogle ScholarPubMed
Rijnsdorp, A., Peck, M.A., Engelhard, G.H., Möllmann, C., Pinnegar, J.K., 2009, Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66, 15701583. CrossRefGoogle Scholar
Rodrigues-Galdino, A.M., Maiolino, C.V., Forgati, M., Donatti, L., Mikos, J.D., Carneiro, P.C.F., Rios, F.S., 2009, Development of the neotropical catfish Rhamdia quelen (Siluriformes, Heptapteridae) incubated in different temperature regimes. Zygote 18, 131144. CrossRefGoogle ScholarPubMed
Romagosa, E., Narahara, M.Y., Fenerich-Verani, N., 2001, Stages of embryonic development of the “matrinxa”, Brycon cephalus (Pisces, Characidae). Bol. Inst. Pesca 27, 2732. Google Scholar
Rombough, P.J., 1988, Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and alevins of steelhead, Salmo gairdneri. Can. J. Zool. 66, 651660. CrossRefGoogle Scholar
Rombough P.J., 1997, The effects of temperature on embryonic and larval development. In Wood C.M., McDonald D.G. (Eds.), Global Warming : Implications for Freshwater and Marine Fish. Cambridge University Press, pp. 177–223.
Sanches, P.V., Baumgartner, G., Bialetzki, A., Suiberto, M.R., Gomes, F.D.C., Nakatani, K., Barbosa, N.D.C., 2008, Early development of Leporinus friderici (Osteichthyes, Anostomidae) from Paraná river basin, Brazil. Acta Sci. Maringá 23, 383389 (in Portuguese with English abstract). Google Scholar
Sato, Y., Sampaio, E., Fenerich-Verani, N., Verani, J.R., 2006, Reproductive biology and induced breeding of two Characidae species (Osteichthyes, Characiformes) from the Sao Francisco River basin, Minas Gerais, Brazil. Rev. Bras. Zool. 23, 267273 (in Portuguese with English abstract). CrossRefGoogle Scholar
Shang, E.H.H, Wu, R.S.S., 2004, Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol., 38, 47634767. CrossRefGoogle ScholarPubMed
Slembrouck J., Komarudin O., Maskur, Legendre M., 2004, Technical Manual for the Artificial Propagation of the Indonesian Catfish, Pangasius djambal. IRD-BRKP edn., Paris, Jakarta.
Small, B.C., Bates, T.D., 2001, Effect of low-temperature incubation of channel catfish Ictalurus punctatus eggs on development, survival, and growth. J. World Aquac. Soc. 32, 189194. CrossRefGoogle Scholar
Teletchea, F., Gardeur, J.-N., Kamler, E., Fontaine, P., 2009, The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species. J. Fish Biol. 74, 652668. CrossRefGoogle Scholar
Vetter, R.D., Kurtzmann, A., Mori, T., 1999, Diel cycles of DNA damage and repair in eggs and larvae of northern anchovy, Engraulis mordax, exposed to solar ultraviolet radiation. Photochem. Photobiol. 69, 2733. CrossRefGoogle Scholar
Virta, C.V., Cooper, M.S., 2009, Ontogeny and phylogeny of the yolk extension in embryonic cypriniform fishes. J. Exp. Zool. (Mol. Dev. Evol.) 312B, 196223. CrossRefGoogle Scholar
Webster, W.S, Abela, D., 2007, The effect of hypoxia in development. Birth Defects Res. (part C) 81, 215228. CrossRefGoogle ScholarPubMed