Skip to main content Accessibility help
×
Home

Identification method for OFDM signal based on fractal box dimension and pseudo-inverse spectrum

  • Wenlong Tang (a1), Hao Cha (a1), Min Wei (a2), Bin Tian (a1) and Xichuang Ren (a3)...

Abstract

Orthogonal frequency division multiplex (OFDM) system is a special cognitive radio system that is widely used in military and civilian applications. As a crucial aspect of spectrum monitoring and electronic countermeasures reconnaissance, it is important to identify the OFDM signal. An identification method based on fractal box dimension and pseudo-inverse spectrum (PIS) has been proposed in this paper for the recognition problem of OFDM signal under multipath channel. Firstly, by theoretically analyzing the fractal box dimension of OFDM signal and single carrier (SC) signal, it can be concluded that the fractal box dimension of OFDM signal and SC signal has obvious differences. Thus, the fractal box dimension of the two types of signal is used to discriminate OFDM signal and SC signal. Then, the PIS of an OFDM signal is constructed according to the characteristics of the OFDM signal. Through theoretical analysis and the experimental simulation, it illustrates that the classification feature could be extracted by detecting the periodical peak of the PIS of OFDM signal and used for identifying OFDM signal in the Gaussian noise. Simulation results demonstrate that the proposed algorithm has better performance than the conventional algorithm based on autocorrelation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Identification method for OFDM signal based on fractal box dimension and pseudo-inverse spectrum
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Identification method for OFDM signal based on fractal box dimension and pseudo-inverse spectrum
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Identification method for OFDM signal based on fractal box dimension and pseudo-inverse spectrum
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Corresponding author: Bin Tian Email: sweetybox123@163.com

References

Hide All
[1]Weinstein, S.B.: The history of orthogonal frequency–division multiplexing. IEEE Commun. Mag., 47 (2009), 2635.
[2]Shahriar, C.; Clancy, T.C.; Mcgwier, R.W.: Equalization attacks against OFDM: analysis and countermeasures. Wireless Commun. Mob. Comput., 16 (2016), 18091825.
[3]Eldemerdash, Y.A.; Dobre, O.A.: Second-order correlation-based algorithm for STBC–OFDM signal identification, in 2015 IEEE Int. Conf. on Communications (ICC), London, UK, 2015, 4972–4977.
[4]Chaudhari, S.; Koivunen, V.; Poor, H.V.: Autocorrelation—based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Trans. Signal Proces., 57 (2009), 26902700.
[5]Bokharaiee, S.; Nguyen, H.H.; Shwedyk, E.: Blind spectrum sensing for OFDM-based cognitive radio systems. IEEE Trans. Veh. Technol., 60 (2011), 858871.
[6]Cao, P.; Peng, H.; Dong, Y.K.; Wang, B.: Blind detection and parameter estimation algorithm for OFDM signal based on cyclic prefix. J. Inform. Eng. Univ., 11 (2010), 196200. (in Chinese).
[7]Punchihewa, A.; Zhang, Q.; Dobre, O.A.; Spooner, C.; Rajan, S.; Inkol, R.: On the cyclostationarity of OFDM and single carrier linearly digitally modulated signals in time dispersive channels: theoretical developments and application. IEEE Trans. Wireless Commun., 9 (2010), 25882599.
[8]Xiang, S.; Jin, Y.K.; Min, S.H.; Chaudhry, A.; Choi, S.H.; Kim, C.J.: A blind OFDM signal detection method based on cyclostationarity analysis. Wireless Pers. Commun., 94 (2015), 393413.
[9]Sun, Z.; Liu, R.Z.; Wang, W.B.: Joint time-frequency domain cyclostationarity-based approach to blind estimation of OFDM transmission parameters. EURASIP J. Wireless Commun., 2013 (2013), 117.
[10]Sun, Z.; Chen, Y.L.; Liu, S.Y.; Wang, W.B.: Cyclostationarity-based joint domain approach to blind recognition of SCLD and OFDM signals. EURASIP J. Adv. Signal Process., 2014 (2014), 5.
[11]Guo, L.; Yu, Z.: Blind recognition of OFDM signals based on multi-parameter characteristics. J. Southwest Jiaotong Univ., 45 (2010), 732738. (in Chinese).
[12]Panayirci, E.; Senol, H.; Poor, H.V.: Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility. IEEE Trans. Signal Proces., 58 (2010), 42254238.
[13]Aboutorab, N.; Hardjawana, W.; Vucetic, B.: A new iterative Doppler-assisted channel estimation joint with parallel ICI cancellation for high-mobility MIMO–OFDM systems. IEEE Trans. Veh. Technol., 61 (2012), 15771589.
[14]Li, Y.B.; Li, J.C.; Lin, Y.: Parameter estimation of LFM signals based on fractal box dimension. Syst. Eng. Electron., 34 (2012), 2427. (in Chinese).
[15]Tekbıyık, K.; Tuğrel, H.B.; Kurt, G.K.; Ayyıldız, C.: Blind recognition of OFDM signals based on cyclostationary signal analysis, in 2017 24th Int. Conf. on Telecommunications (ICT), Limassol, Cyprus, 2017, 1–5.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed