Skip to main content Accessibility help

Quantifying semantic animacy: How much are words alive?

Published online by Cambridge University Press:  17 March 2016

University of Novi Sad
University of Alberta
University of Novi Sad and Eberhard Karls University Tübingen


The main goal of this study, which comprised two experimental tasks and three normative studies, was to describe the underlying distribution of semantic animacy, with the focus on Serbian and English. Animacy was measured using three normative techniques. The cognitive effects of obtained measures were tested in two experiments conducted in both Serbian and English: a visual lexical decision task and a semantic categorization task. Results suggest that semantic animacy is a graded property. A high correlation between Serbian and English measures suggests that semantic animacy might be language independent, most likely because of its biological grounding. As for its behavioral correlates, animacy does not affect lexical decision times but it does codetermine the categorization speed: the category decision gradually slows as a function of the degree of animacy. These results were consistent across two languages under research scrutiny. We thus conclude that animacy is a continuous aspect of meaning.

Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.


Aissen, J. (2003). Differential object marking: Iconicity vs. economy. Natural Language & Linguistic Theory, 21, 435483.CrossRefGoogle Scholar
Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390412.CrossRefGoogle Scholar
Baayen, R. H., Feldman, L. B., & Schreuder, R. (2006). Morphological influences on the recognition of monosyllabic monomorphemic words. Journal of Memory and Language, 53, 496512.Google Scholar
Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3, 1228.CrossRefGoogle Scholar
Baayen, R. H., Milin, P., Filipović-Đurđević, D., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118, 438481.CrossRefGoogle ScholarPubMed
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133, 283316.CrossRefGoogle ScholarPubMed
Branigan, B. H., Pickering, J. M., & Tanaka, M. (2008). Contributions of animacy to grammatical function assignment and word order production. Lingua, 118, 172189.CrossRefGoogle Scholar
Bresnan, J., Cueni, A., Nikitina, T., & Baayen, R. H. (2007). Predicting the dative alternation. In Bouma, G., Kraemer, I., & Zwarts, J. (Eds.), Cognitive foundations of interpretation (pp. 6994). Amsterdam: Royal Netherlands Academy of Science.Google Scholar
Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904911.CrossRefGoogle ScholarPubMed
Cappa, S. F., Perani, D., Schnur, T., Tettamanti, M., & Fazio, F. (1998). The effects of semantic category and knowledge type on lexical-semantic access: A PET study. NeuroImage, 8, 350359.CrossRefGoogle ScholarPubMed
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 134.CrossRefGoogle ScholarPubMed
Chao, L. L., Weisberg, J., & Martin, A. (2002). Experience-dependent modulation of category-related cortical activity. Cerebral Cortex, 12, 545551.CrossRefGoogle ScholarPubMed
Dahl, Ö., & Fraurud, K. (1996). Animacy in grammar and discourse. In Fretheim, T. & Gundel, J. K. (Eds.), Reference and referent accessibility (pp. 4764). Amsterdam: John Benjamins.CrossRefGoogle Scholar
De Renzi, E., & Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30, 325.CrossRefGoogle ScholarPubMed
Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Moss, H. E., Fadili, M. J., et al. (2002). Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 40, 5475.CrossRefGoogle ScholarPubMed
Dixon, R. M. W. (1979). Ergativity. Language, 55, 59138.CrossRefGoogle Scholar
Dunteman, G. (1989). Principal component analysis. Newbury Park, CA: Sage. CrossRefGoogle Scholar
Dye, M., Milin, P., Futrell, R., & Ramscar, M. (in press). A functional theory of gender paradigms. In Kiefer, F., Blevins, J. P., & Bartos, H. (Eds.), Morphological paradigms and functions. Leiden: Brill.Google Scholar
Farah, M. J., Meyer, M. M., & McMullen, P. A. (1996). The living/nonliving dissociation is not an artifact: Giving an a priori implausible hypothesis a strong test. Cognitive Neuropsychology, 13, 137154.CrossRefGoogle Scholar
Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments, and Computers, 35, 116124.CrossRefGoogle ScholarPubMed
Frawley, W. (1992). Linguistic semantics. New York: Routledge.Google Scholar
Grabowski, T. J., Damasio, H., & Damasio, A. R. (1998). Premotor and prefrontal correlates of category-related lexical retrieval. NeuroImage, 7, 232243.CrossRefGoogle ScholarPubMed
Hay, J. B., & Baayen, R. H. (2005). Shifting paradigms: Gradient structure in morphology. Trends in Cognitive Sciences, 9, 342348.CrossRefGoogle ScholarPubMed
Ilić, O., Ković, V., & Styles, S. J. (2013). In the absence of animacy: Superordinate category structure affects subordinate label verification. PLOS ONE, 8, e83282.CrossRefGoogle ScholarPubMed
Inagaki, K., & Hatano, G. (2003). Conceptual and linguistic factors in inductive projection: How do young children recognize commonalities between animals and plants? In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 313333). Cambridge, MA: MIT Press.Google Scholar
Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences, 96, 93799384.CrossRefGoogle Scholar
Jolliffe, I. (2002). Principal component analysis. New York: Wiley.Google ScholarPubMed
Kadhila, N. (2005). NSSC Biology Module 1. Cambridge: Cambridge University Press.Google Scholar
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627633.CrossRefGoogle Scholar
Klenin, E. (2014). Belebtheit, personalität/Animacy, personhood. In Kempgen, S., Kosta, P., Berger, T., & Gutschmidt, K. (Eds.), Die slavischen Sprachen/The Slavic Languages. Halbband 2 (Vol. 32, pp. 152161). Chicago: Walter de Gruyter.Google Scholar
LimeSurvey Project Team/Carsten Schmitz. (2012). LimeSurvey: An Open Source survey tool [Computer software]. Retrieved from Google Scholar
Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309332.CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649652.CrossRefGoogle Scholar
Moore, C. J., & Price, C. J. (1999). A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain, 122, 943962.CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Hodges, J. R., & Price, C. J. (1998). Functional neuroanatomy of the semantic system: Divisible by what? Journal of Cognitive Neuroscience, 10, 766777.CrossRefGoogle Scholar
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 3961.CrossRefGoogle ScholarPubMed
Perani, D., Cappa, S. F., Bettinardi, V., Bressi, S., Gorno-Tempini, M., Matarrese, M., et al. (1995). Different neural systems for the recognition of animals and man-made tools. NeuroReport, 6, 16371641.CrossRefGoogle ScholarPubMed
Perani, D., Schnur, T., Tettamanti, M., Gorno, M., Cappa, S. F., & Fazio, F. (1999). Word and picture matching: A PET study of semantic category effects. Neuropsychologia, 37, 293306.CrossRefGoogle ScholarPubMed
Pilgrim, L. K., Fadili, J., Fletcher, P., & Tyler, L. K. (2002). Overcoming confounds of stimulus blocking: An event-related fMRI design of semantic processing. NeuroImage, 16, 713723.CrossRefGoogle ScholarPubMed
Radanović, J., & Milin, P. (2011). Morpho-semantic properties of Serbian nouns: Animacy and gender pairs. Psihologija, 44, 343366.CrossRefGoogle Scholar
R Core Team. (2013). R: A language and environment for statistical computing [Computer software]. Vienna: R Foundation for Statistical Computing. Retrieved from Google Scholar
Rosenbach, A. (2007). Animacy and grammatical variation—Findings from English genitive variation. Lingua, 118, 151171.CrossRefGoogle Scholar
Sacchett, C., & Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: A category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9, 7386.CrossRefGoogle Scholar
Schütze, C. T., & Sprouse, J. (2014). Judgment data. In Podesva, R. J. & Sharma, D. (Eds.), Research methods in linguistics (pp. 2750). Cambridge: Cambridge University Press.Google Scholar
Silverstein, M. (1976). Hierarchy of features and ergativity. In Dixon, R. M. W. (Ed.), Grammatical categories in Australian languages (pp. 112171). Canberra: Australian Institute of Aboriginal Studies.Google Scholar
Tyler, L., & Moss, H. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5, 244252.CrossRefGoogle Scholar
Tyler, L., Russell, R., Fadili, J., & Moss, H. (2001). The neural representation of nouns and verbs: PET studies. Brain, 124, 16191634.CrossRefGoogle ScholarPubMed
Tyler, L. K., Bright, P., Dick, E., Tavares, P., Pilgrim, L., Fletcher, P., et al. (2003). Do semantic categories activate distinct cortical regions? Evidence for a distributed neural semantic system. Cognitive Neuropsychology, 20, 541559.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain and Language, 75, 195231.CrossRefGoogle ScholarPubMed
Tyler, L. K., Stamatakis, E. A., Dick, E., Bright, P., Fletcher, P., & Moss, H. (2003). Objects and their actions: Evidence for a neurally distributed semantic system. Neuroimage, 18, 542557.CrossRefGoogle Scholar
Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48, 422488.CrossRefGoogle ScholarPubMed
Warrington, E. K., & McCarthy, R. (1987). Categories of knowledge: Further fractionation and an attempted integration. Brain, 110, 12731296.CrossRefGoogle Scholar
Westbury, C. (2007). ACTUATE: Assessing cases: The University of Alberta Testing Environment [Computer software]. Retrieved from Google Scholar
Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
Yamamoto, M. (1999). Animacy and reference: A cognitive approach to corpus linguistics. Amsterdam: John Benjamins.CrossRefGoogle Scholar
Zaenen, A., Carletta, J., Garretson, G., Bresnan, J., Koontz-Garboden, A., Nikitina, T., et al. (2004). Animacy encoding in English: Why and how. In Byron, D. & Webber, B. (Eds.), Proceedings of the 2004 ACL Workshop on Discourse Annotation (pp. 118125). East Stroudsburg, PA: Association for Computational Linguistics.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 41
Total number of PDF views: 228 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-8q5vc Total loading time: 0.515 Render date: 2020-12-02T00:58:31.696Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 00:06:18 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantifying semantic animacy: How much are words alive?
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantifying semantic animacy: How much are words alive?
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantifying semantic animacy: How much are words alive?
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *