Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T22:12:52.771Z Has data issue: false hasContentIssue false

WALL STABILIZATION IN MINES BY SPRAY-ON LINERS

Published online by Cambridge University Press:  31 August 2023

D. P. MASON*
Affiliation:
School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
N. D. FOWKES
Affiliation:
School of Mathematics and Statistics, University of Western Australia, Crawley, Western Australia, Australia; e-mail: neville.fowkes@uwa.edu.au
R. M. YEMATA
Affiliation:
African Institute for Mathematical Sciences, Muizenburg, Cape Town, South Africa; e-mail: reine.marquise@yahoo.fr
C. A ONYEAGOZIRI
Affiliation:
University of Stellenbosch, Stellenbosch, South Africa; e-mail: assumpta@sun.ac.za
H. YILMAZ
Affiliation:
Rock Mechanics Laboratory, CSIR, Johannesburg, South Africa; e-mail: halil.yilmaz.rml@gmail.com

Abstract

Thin spray-on liners (TSLs) have been found to be effective for structurally supporting the walls of mining tunnels and thus reducing the occurrence of rock bursts, an effect primarily due to the penetration of cracks by the liner. Surface tension effects are thus important. However, TSLs are also used to simply stabilize rock surfaces, for example, to prevent rock fall, and in this context crack penetration is desirable but not necessary, and the tensile and shearing strength and adhesive properties of the liner determine its effectiveness. We examine the effectiveness of nonpenetrating TSLs in a global lined tunnel and in a local rock support context. In the tunnel context, we examine the effect of the liner on the stress distribution in a tunnel subjected to a geological or mining event. We show that the liner has little effect on stresses in the surrounding rock and that tensile stresses in the rock surface are transmitted across the liner, so that failure is likely to be due to liner rupture or detachment from the surface. In the local rock support context, loose rock movements are shown to be better achieved using a liner with small Young’s modulus, but high rupture strength.

MSC classification

Secondary: 74A10: Stress
Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, J. R., Elasticity (Kluwer Academic Publishers, Dordrecht, 1992).Google Scholar
Fowkes, N. D., de Freitas, J. A. T. and Stacey, T. R., “Crack repair using an elastic filler”, J. Mech. Phys. Solids 56 (2008) 27492758; doi:10.1016/j.jmps.2008.06.001.CrossRefGoogle Scholar
Mason, D. P. and Stacey, T. R., “Support to rock excavations provided by sprayed liners”, Int. J. Rock Mech. Min. Sci. 45 (2008) 773788; doi:10.1016/j.ijrmms.2007.09.001.CrossRefGoogle Scholar
Stacey, T. R., “Review of membrane support mechanisms, loading mechanisms, desired membrane performance and appropriate test methods”, J. South African Inst. Min. Metallurgy 101 (2001) 343351; https://hdl.handle.net/10520/AJA0038223X_2749.Google Scholar
Stacey, T. R. and Yu, X., “Investigations into mechanisms of rock support provided by sprayed liners”, in: Ground support in mining and underground construction (eds. Villaescusa, E. and Potvin, Y.) (Taylor and Francis, London, 2004) 563569.Google Scholar
Tannant, D. D., “Thin spray-on liners for underground rock support”, in: Proc. 17th Int. Mining Congress and Exhibition of Turkey, Balkema, 15–22 June, 2001 (Chamber of Mining Engineers of Turkey, Ankara, Turkey, 2001) 5768; https://www.semanticscholar.org/paper/Thin-Spray-on-Liners-for-Underground-Rock-Support-Tannant/dcac8b181039d23fe7bd4cbae8a00aa102251fa7.Google Scholar