Skip to main content Accessibility help
×
Home

A NOTE ON STEADY FLOW INTO A SUBMERGED POINT SINK

  • G. C. HOCKING (a1), L. K. FORBES (a2) and T. E. STOKES (a3)

Abstract

The steady, axisymmetric flow induced by a point sink (or source) submerged in an unbounded inviscid fluid is computed. The resulting deformation of the free surface is obtained, and a limit of steady solutions is found that is quite different to those obtained in past work. More accurate solutions indicate that the old limiting flow rate was too high and, in fact, the breakdown of steady solutions at a lower flow rate is characterized by the appearance of spurious wavelets at the free surface.

Copyright

Corresponding author

References

Hide All
[1]Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions (Dover, New York, 1972).
[2]Craya, A., “Theoretical research on the flow of nonhomogeneous fluids”, La Houille Blanche 4 (1949) 4455 ; doi:10.1051/lhb/1949017.
[3]Forbes, L. K. and Hocking, G. C., “Flow caused by a point sink in a fluid having a free surface”, J. Aust. Math. Soc. B 32 (1990) 231249 ; doi:10.1017/S0334270000008465.
[4]Forbes, L. K. and Hocking, G. C., “Withdrawal from a two-layer inviscid fluid in a duct”, J. Fluid Mech. 361 (1998) 275296 ; doi:10.1017/S0334270000010742.
[5]Forbes, L. K. and Hocking, G. C., “Supercritical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth”, J. Fluid Mech. 428 (2001) 333348 ;doi:10.1017/S0022112000002780.
[6]Forbes, L. K. and Hocking, G. C., “On the computation of steady axi-symmetric withdrawal from a two-layer fluid”, Comput. & Fluids 32 (2003) 385401 ; doi:10.1017/S0022112098008805.
[7]Forbes, L. K., Hocking, G. C. and Chandler, G. A., “A note on withdrawal through a point sink in fluid of finite depth”, J. Aust. Math. Soc. B 37 (1996) 406416 ;doi:10.1017/S0334270000008961.
[8]Hocking, G. C., “Withdrawal from two-layer fluid through line sink”, J. Hydraul. Engrg. ASCE 117 (1991) 800805 ; doi:10.1061/(ASCE)0733-9429(1991)117:6(800).
[9]Hocking, G. C., “Supercritical withdrawal from a two-layer fluid through a line sink”, J. Fluid Mech. 297 (1995) 3747 ; doi:10.1017/S022112095002990.
[10]Hocking, G. C., Vanden Broeck, J. M. and Forbes, L. K., “Withdrawal from a fluid of finite depth through a point sink”, ANZIAM J. 44 (2002) 181191 ; doi:10.1017/S1446181100013882.
[11]Huber, D. G., “Irrotational motion of two fluid strata towards a line sink”, J. Engrg. Mech. Div. Proc. ASCE 86 (1960) 7185.
[12]Imberger, J. and Patterson, J. C., “Physical limnology”, in: Advances in applied mechanics, Volume 27 (eds Hutchinson, J. W. and Wu, T.), (Academic Press, Boston, MA, 1989) 303475. doi:10.1016/S0065-2156(08)70199-6.
[13]Jirka, G. H., “Supercritical withdrawal from two-layered fluid systems, Part 1 – Two-dimensional skimmer wall”, J. Hydraul. Res. 17 (1979) 4351 ; doi:10.1080/00221687909499599.
[14]Jirka, G. H. and Katavola, D. S., “Supercritical withdrawal from two-layered fluid systems, Part 2 – Three-dimensional flow into a round intake”, J. Hydraul. Res. 17 (1979) 5362 ;doi:10.1080/00221687909499600.
[15]Moore, D. W., “Spontaneous appearance of a singularity in the shape of an evolving vortex sheet”, Proc. R. Soc. Lond. Ser. A 365 (1979) 105119 ; doi:10.1098/rspa.1979.0009.
[16]Sautreaux, C., “Mouvement d’un liquide parfait soumis à lapesanteur. Détermination des lignes de courant”, J. Math. Pures Appl. 7 (1901) 125159.
[17]Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady free surface flow induced by a line sink”, J. Engrg. Math. 47 (2003) 137160 ; doi:10.1023/A:1025892915279.
[18]Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady flow induced by a withdrawal point beneath a free surface”, ANZIAM J. 47 (2005) 185202 ; doi:10.1017/S1446181100009986.
[19]Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Steady free surface flow induced by a submerged ring source or sink”, J. Fluid Mech. 694 (2012) 352370 ; doi:10.1017/jfm.2011.551.
[20]Tuck, E. O., “On air flow over free surfaces of stationary water”, J. Aust. Math. Soc. B 19 (1975) 6680 ; doi:10.1017/S0334270000000953.
[21]Tuck, E. O. and Vanden Broeck, J. M., “A cusp-like free surface flow due to a submerged source or sink”, J. Aust. Math. Soc. B 25 (1984) 443450 ; doi:10.1017/S0334270000004197.
[22]Tyvand, P. A., “Unsteady free-surface flow due to a line source”, Phys. Fluids A 4 (1992) 671676 ; doi:10.1063/1.858285.
[23]Wood, I. R. and Lai, K. K., “Selective withdrawal from a two-layered fluid”, J. Hydraul. Res. 10 (1972) 475496 ; doi:10.1080/00221687209500036.
[24]Xue, X. and Yue, D. K. P., “Nonlinear free-surface flow due to an impulsively started submerged point sink”, J. Fluid Mech. 364 (1998) 325347 ; doi:10.1017/S022112098001335.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed