Skip to main content Accessibility help
×
Home

A NOTE ON COMPUTING THE INTERSECTION OF SPHERES IN $\mathbb{R}^{n}$

  • D. S. MAIOLI (a1), C. LAVOR (a1) and D. S. GONÇALVES (a2)

Abstract

Finding the intersection of $n$ -dimensional spheres in $\mathbb{R}^{n}$ is an interesting problem with applications in trilateration, global positioning systems, multidimensional scaling and distance geometry. In this paper, we generalize some known results on finding the intersection of spheres, based on QR decomposition. Our main result describes the intersection of any number of $n$ -dimensional spheres without the assumption that the centres of the spheres are affinely independent. A possible application in the interval distance geometry problem is also briefly discussed.

Copyright

Corresponding author

References

Hide All
[1] Alves, R. and Lavor, C., “Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem”, Adv. Appl. Clifford Algebr. 27 (2017) 439452; doi:10.1007/s00006-016-0653-2.
[2] Billinge, S., Duxbury, P., Gonçalves, D. S., Lavor, C. and Mucherino, A., “Assigned and unassigned distance geometry: applications to biological molecules and nanostructures”, 4OR – Q. J. Oper. Res. 14 (2016) 337376; doi:10.1007/s10288-016-0314-2.
[3] Biswas, P., Liang, T., Wang, T. and Ye, Y., “Semidefinite programming based algorithms for sensor network localization”, ACM Trans. Sens. Netw. 2 (2006) 188220; doi:10.1145/1149283.1149286.
[4] Blumenthal, L., Theory and applications of distance geometry (Clarendon Press, Oxford, 1953).
[5] Borg, I. and Groenen, P., Modern multidimensional scaling, 2nd edn. (Springer, New York, 2010); doi:10.1007/978-1-4757-2711-1.
[6] Cassioli, A., Bardiaux, B., Bouvier, G., Mucherino, A., Alves, R., Liberti, L., Nilges, M., Lavor, C. and Malliavin, T., “An algorithm to enumerate all possible protein conformations verifying a set of distance constraints”, BMC Bioinform. 16 (2015) 1623; doi:10.1186/s12859-015-0451-1.
[7] Coope, I., “Reliable computation of the points of intersection of $n$ spheres in $\mathbb{R}^{n}$ ”, ANZIAM J. 42 (2000) 461477; doi:10.21914/anziamj.v42i0.608.
[8] Crippen, G. and Havel, T., Distance geometry and molecular conformation (John Wiley and Sons, New York, 1988).
[9] Dong, Q. and Wu, Z., “A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data”, J. Global Optim. 26 (2003) 321333; doi:10.1023/A:1023221624213.
[10] Golub, G. H. and Van Loan, C. F., Matrix computations, 3rd edn. (JHU Press, Baltimore, MD, 1996).
[11] Gonçalves, D. and Mucherino, A., “Discretization orders and efficient computation of Cartesian coordinates for distance geometry”, Optim. Lett. 8 (2014) 21112125; doi:10.1007/s11590-014-0724-z.
[12] Gonçalves, D., Mucherino, A., Lavor, C. and Liberti, L., “Recent advances on the interval distance geometry problem”, J. Global Optim. (2017) 121; doi:10.1007/s10898-016-0493-6.
[13] Lavor, C., Alves, R., Figueiredo, W., Petraglia, A. and Maculan, N., “Clifford algebra and the discretizable molecular distance geometry problem”, Adv. Appl. Clifford Algebr. 25 (2015) 925942; doi:10.1007/s00006-015-0532-2.
[14] Lavor, C., Liberti, L., Maculan, N. and Mucherino, A., “Recent advances on the discretizable molecular distance geometry problem”, Eur. J. Oper. Res. 219 (2012) 698706; doi:10.1016/j.ejor.2011.11.007.
[15] Lavor, C., Liberti, L., Maculan, N. and Mucherino, A., “The discretizable molecular distance geometry problem”, Comput. Optim. Appl. 52 (2012) 115146; doi:10.1007/s10589-011-9402-6.
[16] Lavor, C., Liberti, L. and Mucherino, A., “The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances”, J. Global Optim. 56 (2013) 855871; doi:10.1007/s10898-011-9799-6.
[17] Liberti, L. and Lavor, C., “Six mathematical gems from the history of distance geometry”, Int. Trans. Oper. Res. 23 (2016) 897920; doi:10.1111/itor.12170.
[18] Liberti, L., Lavor, C. and Maculan, N., “A branch-and-prune algorithm for the molecular distance geometry problem”, Int. Trans. Oper. Res. 15 (2008) 117; doi:10.1111/j.1475-3995.2007.00622.x.
[19] Liberti, L., Lavor, C., Maculan, N. and Mucherino, A., “Euclidean distance geometry and applications”, SIAM Rev. 56 (2014) 369; doi:10.1137/120875909.
[20] Mucherino, A., Lavor, C., Liberti, L. and Maculan, N., Distance geometry: theory, methods and application (Springer, New York, NY, 2013); doi:10.1007/978-1-4614-5128-0.
[21] Nielsen, J. and Roth, B., “On the kinematic analysis of robotic mechanisms”, Int. J. Robot. Res. 18 (1999) 11471160; doi:10.1177/02783649922067771.
[22] Wu, D. and Wu, Z., “An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data”, J. Global Optim. 37 (2007) 661673; doi:10.1007/s10898-006-9080-6.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A NOTE ON COMPUTING THE INTERSECTION OF SPHERES IN $\mathbb{R}^{n}$

  • D. S. MAIOLI (a1), C. LAVOR (a1) and D. S. GONÇALVES (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed