Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T10:04:01.693Z Has data issue: false hasContentIssue false

The Lebesgue function for generalized Hermite-Fejér interpolation on the Chebyshev nodes

Published online by Cambridge University Press:  17 February 2009

Graeme J. Byrne
Affiliation:
Division of Mathematics, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia.
T. M. Mills
Affiliation:
Division of Mathematics, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia.
Simon J. Smith
Affiliation:
Division of Mathematics, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a short survey of convergence results and properties of the Lebesgue function λm,n(x) for(0, 1, …, m)Hermite-Fejér interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n → ∞ of the Lebesgue constant Λm,n = max{λm,n(x): −1 ≤ x ≤ 1} for even m is then studied, and new results are obtained for the asymptotic expansion of Λm,n. Finally, graphical evidence is provided of an interesting and unexpected pattern in the distribution of the local maximum values of λm,n(x) if m ≥ 2 is even.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Brutman, L., “On the Lebesgue function for polynomial interpolation”, SIAM J. Numer. Anal. 15 (1978) 694704.CrossRefGoogle Scholar
[2]Brutman, L., “Lebesgue functions for polynomial interpolation—a survey”, Ann. Numer. Math. 4 (1997) 111127.Google Scholar
[3]Byme, G. J., Mills, T. M. and Smith, S. J., “The Lebesgue constant for higher order Hermite-Fejér interpolation on the Chebyshev nodes”, J. Approx. Theory 81 (1995) 347367.Google Scholar
[4]Dzjadyk, V. K. and Ivanov, V. V., “On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points”, Anal. Math. 9 (1983) 8597.CrossRefGoogle Scholar
[5]Ehlich, H. and Zeller, K., “Answertung der Normen von Interpolationsoperatoren”, Math. Ann. 164 (1966) 105112.CrossRefGoogle Scholar
[6]Elliott, D., “Lagrange interpolation—decline and fall?”, Int. J. Math. Educ. Sci. Technol. 10 (1979) 112.CrossRefGoogle Scholar
[7]Faber, G., “Über die interpolatorische Darstellung stetiger Funktionen”, Jahresber. Deutsch. Math. Verein. 23 (1914) 190210.Google Scholar
[8]Fejér, L., “Über Interpolation”, Göttinger Nachrichten (1916) 6691.Google Scholar
[9]Günttner, R., “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal. 17 (1980) 512520.CrossRefGoogle Scholar
[10]Günttner, R., “On asymptotics for the uniform norms of the Lagrange interpolation polynomials corresponding to extended Chebyshev nodes”, SIAM J. Numer. Anal. 25 (1988) 461469.CrossRefGoogle Scholar
[11]Kreß, R., “On general Hermite trigonometric interpolation”, Numer. Math. 20 (1972) 125138.CrossRefGoogle Scholar
[12]Luttmann, F. W. and Rivlin, T. J., “Some numerical experiments in the theory of polynomial interpolation”, IBM J. Res. Develop. 9 (1965) 187191.CrossRefGoogle Scholar
[13]Rivlin, T. J., An introduction to the approximation of functions (Dover, New York, 1981).Google Scholar
[14]Rivlin, T. J., Chebyshev polynomials, 2nd ed. (Wiley, New York, 1990).Google Scholar
[15]Sakai, R., “Hermite-Fejér interpolation prescribing higher order derivatives”, in: Progress in Approximation Theory (eds Nevai, P. and Pinkus, A.), (Academic Press, Boston, 1991), pp. 731759.Google Scholar
[16]Sakai, R., “Certain unbounded Hermite-Fejér interpolatory polynomial operators”, Acta Math. Hungar. 59 (1992) 111114.CrossRefGoogle Scholar
[17]Sakai, R. and Vértesi, P., “Hermite-Fejér interpolations of higher order. III”, Studia Sci. Math. Hungar. 28 (1993) 8797.Google Scholar
[18]Sakai, R. and Vértesi, P., “Hermite-Fejér interpolations of higher order. IV”, Studia Sci. Math. Hungar. 28 (1993) 379386.Google Scholar
[19]Shivakumar, P. N. and Wong, R., “Asymptotic expansion of the Lebesgue constants associated with polynomial interpolation”, Math. Comp. 39 (1982) 195200.CrossRefGoogle Scholar
[20]Smith, S. J., “On the positivity of the fundamental polynomials for generalized Hermite-Fejér interpolation on the Chebyshev Nodes”, J. Approx. Theory 96 (1999) 338344.CrossRefGoogle Scholar
[21]Szabados, J., “On the order of magnitude of fundamental polynomials of Hermite interpolation”, Acta Math. Hungar. 61 (1993) 357368.CrossRefGoogle Scholar
[22]Szabados, J. and Varma, A. K., “On (0, 1, 2) interpolation in uniform metric”, Proc. Amer. Math. Soc. 109 (1990) 975979.Google Scholar
[23]Szabados, J. and Vértesi, P., Interpolation of Functions (World Scientific, Singapore, 1990).CrossRefGoogle Scholar
[24]Vértesi, P., “Hermite-Fejér interpolations of higher order. I”, Acta Math. Hungar. 54 (1989) 135152.CrossRefGoogle Scholar
[25]Vértesi, P., “Hermite and Hermite-Fejér interpolations of higher order. II (Mean convergence)”, Acta Math. Hungar. 56 (1990) 369379.CrossRefGoogle Scholar