Skip to main content Accessibility help
×
Home

EXISTENCE AND UNIQUENESS OF WEAK AND CLASSICAL SOLUTIONS FOR A FOURTH-ORDER SEMILINEAR BOUNDARY VALUE PROBLEM

  • CRISTIAN-PAUL DANET (a1)

Abstract

This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles.

Copyright

References

Hide All
[1] Adams, R. A. and Fournier, J., Sobolev spaces, 2nd edn, Volume 140 of Pure and Applied Mathematics Series (Academic Press, Boston, MA, 2003); https://www.elsevier.com/books/sobolev-spaces/adams/978-0-12-044143-3.
[2] Bonheure, D., “Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity”, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 319340; doi:10.1016/j.anihpc.2003.03.001.
[3] Danet, C.-P., “Uniqueness in some higher order elliptic boundary value problems in $n$ dimensional domains”, Electron. J. Qual. Theory Differ. Equ. 54 (2011) 112; doi:10.14232/ejqtde.2011.1.54.
[4] Danet, C.-P., The classical maximum principle. Some of its extensions and applications (Lambert Academic Publishing, Saarbrcken, Germany, 2013); https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-40556-3/the-classical-maximum-principle-some-extensions-and-applications.
[5] Danet, C.-P., “On a hinged plate equation of nonconstant thickness”, Differ. Equ. Appl. 10 (2018) 235238; doi:10.7153/dea-2018-10-16.
[6] Danet, C.-P. and Mareno, A., “Maximum principles for a class of linear equations of even order”, Math. Inequal. Appl. 16 (2013) 809822; doi:10.7153/mia-16-61.
[7] Djadli, Z., Malchiodi, A. and Ahmedou, M., “Prescribing a fourth order conformal invariant on the standard sphere. II. Blow up analysis and applications”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2002) 387434; https://www.academia.edu/2086163/Prescribing_a_fourth_order_conformal_invariant_on_the_standard_sphere_Part_II_blow-up_analysis_and_applications.
[8] Gazolla, F., Grunau, H.-C. and Sweers, G., Polyharmonic boundary value problems (Springer, Berlin, Heidelberg, 2010); https://www.springer.com/gp/book/9783642122446.
[9] Gelfand, I. M., “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. 29(2) (1963) 295381; doi:10.1007/978-3-642-61705-8.
[10] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order (Springer, Berlin, Heidelberg, 2001); https://www.springer.com/gp/book/9783540411604.
[11] Goyal, V. B., “Liouville-type results for fourth order elliptic equations”, Proc. Roy. Soc. Edinburgh 103A (1986) 209213; doi:10.1017/S0308210500018862.
[12] Goyal, V. B. and Schaefer, P. W., “On a subharmonic functional in fourth order nonlinear elliptic problems”, J. Math. Anal. Appl. 83 (1981) 2025; doi:10.1016/0022-247X(81)90243-2.
[13] Hunt, G. W., Bolt, H. M. and Thompson, J. M. T., “Structural localization phenomena and the dynamical phase-space analogy”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 425 (1989) 245267; doi:10.1098/rspa.1989.0105.
[14] Karageorgis, P. and Stalker, J., “A lower bound for the amplitude of traveling waves of suspension bridges”, Nonlinear Anal. 75 (2012) 52125214; doi:10.1016/j.na.2012.04.037.
[15] Kawohl, B. and Sweers, G., “On the differential equation $u_{xxxx}+u_{yyyy}=f$ for an anisotropic stiff material”, SIAM J. Math. Anal. 37 (2006) 18281853; doi:10.1137/050624704.
[16] Komkov, V., “Certain estimates for solutions of nonlinear elliptic differential equations applicable to the theory of thin plates”, SIAM J. Appl. Math. 28 (1975) 2434; doi:10.1137/0128003.
[17] Ladyzhenskaya, O. A., The mathematical theory of viscous incompressible flow (Gordon and Breach Science Publishers, New York, 1969); https://www.worldcat.org/title/mathematical-theory-of-viscous-incompressible-flows/oclc/639875838.
[18] Lazer, A. C. and McKenna, P. J., “On traveling waves in a suspension bridge model as the wave speed goes to zero”, Nonlinear Anal. 74 (2011) 39984001; doi:10.1016/j.na.2011.03.024.
[19] Mareno, A., “Maximum principles for some higher-order semilinear elliptic equations”, Glasg. Math. J. 53 (2010) 313320; doi:10.1017/S001708951000073X.
[20] Mareno, A., “A maximum principle result for a general fourth order semilinear elliptic equation”, J. Appl. Math. Phys. 4 (2016) 16821686; doi:10.4236/jamp.2016.48176.
[21] Miranda, C., “Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche di due variabili”, Giorn. Mat. Battaglini 78 (1948) 97118.
[22] Payne, L. E., “Some remarks on maximum principles”, J. Anal. Math. 30 (1976) 421433; doi:10.1007/BF02786729.
[23] Peletier, L. A. and Troy, W. C., Spatial patterns. Higher order models in physics and mechanics, Volume 45 of Progress in Nonlinear Differential Equations and their Applications (Birkhäuser Boston Inc., Boston, MA, 2001); https://www.springer.com/gp/book/9780817641108.
[24] Protter, M. H. and Weinberger, H. F., Maximum principles in differential equations (Prentice-Hall Inc., Englewood Cliffs, NJ, 1967); https://www.springer.com/gp/book/9780387960685.
[25] Schaefer, P. W., “On a maximum principle for a class of fourth-order semilinear elliptic equations”, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 319323; doi:10.1017/S0308210500025233.
[26] Sperb, R. P., Maximum principles and their applications (Academic Press, New York, 1981); https://www.elsevier.com/books/maximum-principles-and-their-applications/sperb/978-0-12-656880-6.
[27] Tseng, S. and Lin, C.-S., “On a subharmonic functional of some even order elliptic problems”, J. Math. Anal. Appl. 207 (1997) 127157; doi:10.1006/jmaa.1997.5272.
[28] Zhang, H. and Zhang, W., “Maximum principles and bounds in a class of fourth-order uniformly elliptic equations”, J. Phys. A: Math. Gen. 35 (2002) 92459250; doi:10.1088/0305-4470/35/43/318.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

EXISTENCE AND UNIQUENESS OF WEAK AND CLASSICAL SOLUTIONS FOR A FOURTH-ORDER SEMILINEAR BOUNDARY VALUE PROBLEM

  • CRISTIAN-PAUL DANET (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed