Skip to main content Accessibility help
×
Home

THE EFFECT OF SURFACE TENSION ON FREE-SURFACE FLOW INDUCED BY A POINT SINK

  • G. C. HOCKING (a1), H. H. N. NGUYEN (a1), L. K. FORBES (a2) and T. E. STOKES (a3)

Abstract

The steady, axisymmetric flow induced by a point sink (or source) submerged in an inviscid fluid of infinite depth is computed and the resulting deformation of the free surface is obtained. The effect of surface tension on the free surface is determined and is the new component of this work. The maximum Froude numbers at which steady solutions exist are computed. It is found that the determining factor in reaching the critical flow changes as more surface tension is included. If there is zero or a very small amount of surface tension, the limiting factor appears to be the formation of small wavelets on the free surface; but, as the surface tension increases, this is replaced by a tendency for the lowest point on the free surface to descend sharply as the Froude number is increased.

Copyright

Corresponding author

References

Hide All
[1] Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions (Dover, New York, 1970).
[2] Craya, A., “Theoretical research on the flow of nonhomogeneous fluids”, La Houille Blanche 4 (1949) 4455; doi:10.1051/lhb/1949017.
[3] Forbes, L. K. and Hocking, G. C., “Flow caused by a point sink in a fluid having a free surface”, J. Aust. Math. Soc. Ser. B 32 (1990) 231249; doi:10.1017/S0334270000008456.
[4] Forbes, L. K. and Hocking, G. C., “Flow induced by a line sink in a quiescent fluid with surface-tension effects”, J. Aust. Math. Soc. Ser. B 34 (1993) 377391; doi:10.1017/S0334270000008961.
[5] Forbes, L. K. and Hocking, G. C., “On the computation of steady axi-symmetric withdrawal from a two-layer fluid”, Comput. & Fluids 32 (2003) 385401; doi:10.1017/S0022112098008805.
[6] Forbes, L. K., Hocking, G. C. and Chandler, G. A., “A note on withdrawal through a point sink in fluid of finite depth”, J. Aust. Math. Soc. Ser. B 37 (1996) 406416 doi:10.1017/S0334270000008961.
[7] Hocking, G. C., “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Aust. Math. Soc. Ser. B 26 (1985) 470486 doi:10.1017/S0334270000004665.
[8] Hocking, G. C., “Supercritical withdrawal from a two-layer fluid through a line sink”, J. Fluid Mech. 297 (1995) 3747; doi:10.1017/S022112095002990.
[9] Hocking, G. C. and Forbes, L. K., “Withdrawal from a fluid of finite depth through a line sink, including surface tension effects”, J. Engrg. Math. 38 (2000) 91100 doi:10.1023/A:1004612117673.
[10] Hocking, G. C. and Forbes, L. K., “Supercritical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth”, J. Fluid Mech. 428 (2001) 333348 doi:10.1017/S0022112000002780.
[11] Hocking, G. C., Forbes, L. K. and Stokes, T. E., “A note on steady flow into a submerged point sink”, ANZIAM J. 56 (2014) 150159; doi:10.1017/S1446181114000303.
[12] Hocking, G. C., Vanden Broeck, J.-M. and Forbes, L. K., “Withdrawal from a fluid of finite depth through a point sink”, ANZIAM J. 44 (2002) 181191; doi:10.1017/S1446181100013882.
[13] Hocking, G. C. and Zhang, H., “A note on axisymmetric supercritical coning in a porous medium”, ANZIAM J. 55 (2014) 327335; doi:10.1017/S1446181114000170.
[14] Holmes, R. J. and Hocking, G. C., “A line sink in a flowing stream with surface tension effects”, Euro. J. Appl. Maths (in press); doi:10.1017/S0956792515000546.
[15] Lubin, B. T. and Springer, G. S., “The formation of a dip on the surface of a liquid draining from a tank”, J. Fluid Mech. 29 (1967) 385390; doi:10.1017/S0022112067000898.
[16] Mekias, H. and Vanden Broeck, J.-M., “Subcritical flow with a stagnation point due to a source beneath a free surface”, Phys. Fluids A 3 (1991) 26522658; doi:10.1063/1.858154.
[17] Peregrine, H., “A line source beneath a free surface”, Report 1248, Mathematics Research Centre, University of Wisconsin, Madison, 1972,http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0753140.
[18] Sautreaux, C., “Mouvement d’un liquide parfait soumis à lapesanteur. Détermination des lignes de courant”, J. Math. Pures Appl. 7 (1901) 125160; https://eudml.org/doc/235162.
[19] Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady free surface flow induced by a line sink”, J. Engrg. Math. 47 (2003) 137160; doi:10.1023/A:1025892915279.
[20] Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady flow induced by a withdrawal point beneath a free surface”, ANZIAM J. 47 (2005) 185202; doi:10.1017/S1446181100009986.
[21] Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Steady free surface flow induced by a submerged ring source or sink”, J. Fluid Mech. 694 (2012) 352370; doi:10.1017/jfm.2011.551.
[22] Tuck, E. O., “On air flow over free surfaces of stationary water”, J. Aust. Math. Soc. Ser. B 19 (1975) 6680; doi:10.1017/S0334270000000953.
[23] Tuck, E. O. and Vanden Broeck, J.-M., “A cusp-like free surface flow due to a submerged source or sink”, J. Aust. Math. Soc. Ser. B 25 (1984) 443450; doi:10.1017/S0334270000004197.
[24] Tyvand, P. A., “Unsteady free-surface flow due to a line source”, Phys. Fluids A 4 (1992) 671676 ;doi:10.1063/1.858285.
[25] Vanden Broeck, J.-M. and Keller, J. B., “Free surface flow due to a sink”, J. Fluid Mech. 175 (1987) 109117; doi:10.1017/S0022112087000314.
[26] Vanden Broeck, J.-M. and Keller, J. B., “An axisymmetric free surface with a 120 degree angle along a circle”, J. Fluid Mech. 342 (1997) 403409; doi:10.1017/S0022112098001335.
[27] Vanden Broeck, J.-M., Schwartz, L. W. and Tuck, E. O., “Divergent low-Froude-number series expansion of nonlinear free-surface flow problems”, Proc. R. Soc. Lond. Ser. A 361 (1978) 207224; doi:10.1098/rspa.1978.0099.
[28] Xue, X. and Yue, D. K. P., “Nonlinear free surface flow due to an impulsively started submerged point sink”, J. Fluid Mech. 364 (1998) 325347; doi:10.1017/S0022112098001335.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed