Skip to main content Accessibility help
×
Home

THE DEMON DRINK

  • MARK IAN NELSON (a1), PETER HAGEDOORN (a1) and ANNETTE L. WORTHY (a1)

Abstract

We provide a qualitative analysis of a system of nonlinear differential equations that model the spread of alcoholism through a population. Alcoholism is viewed as an infectious disease and the model treats it within a sir framework. The model exhibits two generic types of steady-state diagram. The first of these is qualitatively the same as the steady-state diagram in the standard sir model. The second exhibits a backwards transcritical bifurcation. As a consequence of this, there is a region of bistability in which a population of problem drinkers can be sustained, even when the reproduction number is less than one. We obtain a succinct formula for this scenario when the transition between these two cases occurs.

Copyright

Corresponding author

References

Hide All
[1] Anderson, R. M. and May, R. M., Infectious diseases of humans (Oxford University Press, Oxford, 1991).
[2] Bhunu, C. P., “A mathematical analysis of alcoholism”, World J. Modell. Simul. 8 (2012) 124134; http://www.wjms.org.uk/wjmsvol08no02paper05.pdf.
[3] Brauer, F. and Castillo-Chávez, C., Mathematical models in population biology and epidemiology, 1st edn. Volume 40 of Texts in Appl. Math. (Springer, Berlin, 2001).
[4] Brauer, F., van den Driessche, P. and Wu, J. (eds), Mathematical epidemiology, Volume 1945 of Lect. Notes in Math. (Springer, Berlin–Heidelberg, 2008).
[5] Buonomo, B. and Lacitignola, D., “Modeling peer influence effects on the spread of high-risk alcohol consumption behavior”, Ric. Mat. 63 (2014) 101117; doi:10.1007/s11587-013-0167-3.
[6] Cintrón-Arias, A., Sánchez, F., Wang, X., Castillo-Chavez, C., Gorman, D. M. and Gruenewald, P. J., “The role of nonlinear relapse on contagion amongst drinking communities”, in: Mathematical and statistical estimation approaches in epidemiology (eds Castillo-Chavez, C., Bettencourt, L. M. A. and Chowell, G.), (Springer, The Netherlands, 2009) 343360; doi:10.1007/978-90-481-2313-1_14.
[7] Diekmann, O., Heesterbeek, J. A. P. and Britton, T., Mathematical tools for understanding infectious disease dynamics (Princeton University Press, Princeton, NJ, 2013).
[8] Dulac, H., Points singulieres des équations differentielles, Volume 61 of Mém. Sci. Math. (Gauthier-Villars, Paris, 1934).
[9] Eastwood, C. J., Mahajan, V. and Muller, E., “A nonuniform influence innovation diffusion model of new product acceptance”, Market. Sci. 2 (1983) 273295; doi:10.1287/mksc.2.3.273.
[10] Gomes, M. G. M., White, L. J. and Medley, G. F., “Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives”, J. Theoret. Biol. 228 (2004) 539549; doi:10.1016/j.jtbi.2004.02.015.
[11] González, B., Huerta-Sánchez, E., Ortiz-Nieves, A., Vázquez-Alvarez, T. and Kribs-Zaleta, C., “Am I too fat? Bulimia as an epidemic”, J. Math. Psych. 47 (2003) 515526; doi:10.1016/j.jmp.2003.08.002.
[12] Hagedoorn, P., “The impact of media campaigns on the spread of alcoholism”, Undergraduate honours Thesis, School of Mathematics and Applied Statistics, The University of Wollongong, 2015.
[13] Harrison, D., “Australian alcohol consumption at 50-year low, ABS says”. in: The Sydney Morning Herald (7 May 2015).
[14] Hill, A. L., Rand, D. G., Nowak, M. A. and Christakis, N. A., “Infectious disease modeling of social contagion in networks”, PLOS Comput. Biol. 6 (2010) e1000968 doi:10.1371/journal.pcbi.1000968.
[15] Hindmarsh, C. S., Jones, S. C. and Kervin, L., “Effectiveness of alcohol media literacy programmes: a systematic literature review”, Health Educ. Res. 30 (2015) 449465; doi:10.1093/her/cyv015.
[16] Huo, H.-F. and Song, N.-N., “Global stability for a binge drinking model with two stages”, Discrete Dyn. Nat. Soc. 2012 (2012) Article ID: 829386; doi:10.1155/2012/829386.
[17] Huo, H.-F. and Wang, Q., “Modelling the influence of awareness programs by media on the drinking dynamics”, Abstr. Appl. Anal. 2014 (2014) Article ID: 938080; doi:10.1155/2014/938080.
[18] Huo, H.-F. and Zhu, C.-C., “Influence of relapse in a giving up smoking model”, Abstr. Appl. Anal. 2013 (2013) Article ID: 525461; doi:10.1155/2013/525461.
[19] Jódar, L., Santonja, F. J. and González-Parra, G., “Modeling dynamics of infant obesity in the region of Valencia, Spain”, Comput. Math. Appl. 56 (2008) 679689; doi:10.1016/j.camwa.2008.01.011.
[20] Jones, J. D., Comer, S. D. and Kranzler, H. R., “The pharmacogenetics of alcohol use disorder”, Alcohol. Clin. Exp. Res. 39 (2015) 391402; doi:10.1111/acer.12643.
[21] Jordan, D. W. and Smith, P., Nonlinear ordinary differential equations, 2nd edn Oxford Appl. Math. Comput. Ser. (Clarendon Press, Oxford, 1989).
[22] Kribs-Zaleta, C. M., “Sociological phenomena as multiple nonlinearities: MTBI’s new metaphor for complex human interactions”, Math. Biosci. Eng. 10 (2013) 15871607; doi:10.3934/mbe.2013.10.1587.
[23] Manthey, J. L., Aidoo, A. Y. and Ward, K. Y., “Campus drinking: an epidemiological model”, J. Biol. Dyn. 2 (2008) 346356; doi:10.1080/17513750801911169.
[24] Mubayi, A., Greenwood, P. E., Castillo-Ch’avez, C., Gruenewald, P. J. and Gorman, D. M., “The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments”, Socio-Econ. Plann. Sci. 44 (2010) 4556; doi:10.1016/j.seps.2009.02.002.
[25] Mulone, G. and Straughan, B., “Modeling binge drinking”, Int. J. Biomath. 5 (2009) 1250005; doi:10.1142/S1793524511001453.
[26] Mulone, G. and Straughan, B., “A note on heroin epidemics”, Math. Biosci. 218 (2009) 138141; doi:10.1016/j.mbs.2009.01.006.
[27] Nowak, M. A. and May, R. M., Virus dynamics, 1st edn (Oxford University Press, Oxford, 2000).
[28] Perko, L., Differential equations and dynamical systems, 2nd edn. Volume 7 of Texts in Appl. Math. (Springer, New York, 1996).
[29] Roberts, M. G., “The pluses and minuses of $r_{0}$ ”, J. R. Soc. Interface 4 (2007) 949961; doi:10.1098/rsif.2007.1031.
[30] Sánchez, F., Wang, X., Castillo-Chávez, C., Gorman, D. M. and Gruenewald, P. J., “Drinking as an epidemic – a simple mathematical model with recovery and relapse”, in: Therapist’s guide to evidence-based relapse prevention (eds Witkiewitz, K. and Marlatt, G.), (Academic Press, Burlington, MA, 2007) Chapter 16, 353368; doi:10.1016/B978-012369429-4/50046-X.
[31] Sharomi, O. and Gumel, A. B., “Curtailing smoking dynamics: a mathematical modeling approach”, Appl. Math. Comput. 195 (2008) 475499; doi:10.1016/j.amc.2007.05.012.
[32] Smith, R., Modelling disease ecology with mathematics, Volume 2 of Differential Equ. Dyn. Syst. (American Institute of Mathematical Sciences, Springfield, MO, 2008).
[33] Walters, C. E., Straughan, B. and Kendal, J. R. , “Modelling alcohol problems: total recovery”, Ric. Mat. 62 (2013) 3353; doi:10.1007/s11587-012-0138-0.
[34] White, E. and Comiskey, C., “Heroin epidemics, treatment and ODE modelling”, Math. Biosci. 208 (2007) 312324; doi:10.1016/j.mbs.2006.10.008.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed