Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T05:32:21.104Z Has data issue: false hasContentIssue false

ASYMPTOTIC ANALYSIS FOR THE MEAN FIRST PASSAGE TIME IN FINITE OR SPATIALLY PERIODIC 2D DOMAINS WITH A CLUSTER OF SMALL TRAPS

Published online by Cambridge University Press:  01 March 2021

S. IYANIWURA
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada; iyaniwura@math.ubc.ca.
M. J. WARD*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada; iyaniwura@math.ubc.ca.

Abstract

A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps.

Type
Research Article
Copyright
© Australian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénichou, O. and Voituriez, R., “From first-passage times of random walks in confinement to geometry-controlled kinetics”, Phys. Rep. 539 (2014) 225284; doi:10.1016/j.physrep.2014.02.003.CrossRefGoogle Scholar
Bressloff, P. C., “Asymptotic analysis of extended two-dimensional narrow capture problems”, Proc. Roy. Soc. A 477 (2021); doi:10.1098/rspa.2020.0771.CrossRefGoogle Scholar
Bressloff, P. C., “Search processes with stochastic resetting and multiple targets”, Phys. Rev. E 102 (2020) 022115; doi:10.1103/PhysRevE.102.022115.CrossRefGoogle ScholarPubMed
Chen, X. and Oshita, Y., “An application of the modular function in nonlocal variational problems”, Arch. Ration. Mech. Anal. 186 (2007) 109132; doi:10.1007/s00205-007-0050-z.CrossRefGoogle Scholar
Coombs, D., Straube, R. and Ward, M. J., “Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points”, SIAM J. Appl. Math. 70 (2009) 302332; doi:10.1137/080733280.CrossRefGoogle Scholar
FlexPDE, “PDE solutions Inc”, 2015, http://www.pdesolutions.com.Google Scholar
Holcman, D. and Schuss, Z., “The narrow escape problem”, SIAM Rev. 56 (2014) 213257; doi:10.1137/120898395.CrossRefGoogle Scholar
Holcman, D. and Schuss, Z., “Time scale of diffusion in molecular and cellular biology”, J. Phys. A 47 (2014) 173001; doi:10.1088/1751-8113/47/17/173001.CrossRefGoogle Scholar
Iron, D., Rumsey, J., Ward, M. J. and Wei, J. C., “Logarithmic expansions and the stability of periodic patterns of localized spots for reaction–diffusion systems in ${\mathbb{R}}^2$ ”, J. Nonlinear Sci. 24 (2014), 564627; doi:10.1007/s00332-014-9206-9.CrossRefGoogle Scholar
Kolokolnikov, T., Titcombe, M. S. and Ward, M. J., “Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps”, Eur. J. Appl. Math. 16 (2005) 161200; doi:10.1017/S0956792505006145.CrossRefGoogle Scholar
Kurella, V., Tzou, J. C., Coombs, D. and Ward, M. J., “Asymptotic analysis of first passage time problems inspired by ecology”, Bull. Math. Biol. 77 (2015) 83125; doi:10.1007/s11538-014-0053-5.CrossRefGoogle Scholar
Lindsay, A. E., Tzou, J. C. and Kolokolnikov, T., “Narrow escape problem with mixed trap and the effect of orientation”, Phys. Rev. E 91 (2015) 032111; doi:10.1103/PhysRevE.91.032111.CrossRefGoogle ScholarPubMed
Ransford, T., Potential theory in the complex plane, Volume 28 of London Math. Soc. Stud. Texts (Cambridge University Press, Cambridge, 1995); doi:10.1017/CBO9780511623776.CrossRefGoogle Scholar
Redner, S., A guide to first-passage processes (Cambridge University Press, Cambridge, 2001); doi:10.1017/CBO9780511606014.CrossRefGoogle Scholar
Singer, A., Schuss, Z. and Holcman, D., “Narrow escape, part II: the circular disk”, J. Stat. Phys. 122 (2006) 465489; doi:10.1007/s10955-005-8027-5.CrossRefGoogle Scholar
Torney, D. C. and Goldstein, B., “Rates of diffusion-limited reaction in periodic systems”, J. Stat. Phys. 49 (1987) 725750; doi:10.1007/BF01009354.CrossRefGoogle Scholar
Trefethon, N., “Series solution of Laplace problems”, ANZIAM J. 60 (2018) 126; doi:10.1017/S1446181118000093.Google Scholar
Ward, M. J., “Spots, traps, and patches: asymptotic analysis of localized solutions to some linear and nonlinear diffusive systems”, Nonlinearity 31 (2018) R189R239; doi:10.1088/1361-6544/AABE4B.CrossRefGoogle Scholar
Ward, M. J., Henshaw, W. D. and Keller, J. B., “Summing logarithmic expansions for singularly perturbed eigenvalue problems”, SIAM J. Appl. Math. 53 (1993) 799828; doi:10.1137/0153039.CrossRefGoogle Scholar
Ward, M. J. and Keller, J. B., “Strong localized perturbations of eigenvalue problems”, SIAM J. Appl. Math. 53 (1993) 770798; doi:10.1137/0153038.CrossRefGoogle Scholar