Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T16:49:45.529Z Has data issue: false hasContentIssue false

The olive branch chronology stands irrespective of tree-ring counting

Published online by Cambridge University Press:  02 January 2015

Walter L. Friedrich
Affiliation:
Department of Geoscience, Aarhus University, Hoegh Guldbergsgade 2, DK-8000 Aarhus, Denmark
Bernd Kromer
Affiliation:
University of Heidelberg, Institute of Environmental Physics, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
Michael Friedrich
Affiliation:
University of Heidelberg, Institute of Environmental Physics, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany Institute of Botany, Hohenheim University, D-70593 Stuttgart, Germany
Jan Heinemeier
Affiliation:
Accelerator Mass Spectrometry 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
Tom Pfeiffer
Affiliation:
VolcanoDiscovery, Kronenstrasse 2, Troisdorf 53840, Germany
Sahra Talamo
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, D-04103 Leipzig, Germany

Abstract

Cherubini et al. (above) question the reliability of identifying annual growth increments in olive trees, and therefore voice caution against the result of the wiggle-match of the four sections of a branch of an olive tree to the 14C calibration curve. Friedrich et al. (2006) were well aware of the problematic density structure of olive trees, and therefore assigned rather wide error margins of up to 50 per cent to the ring count. This still resulted in a late seventeenth century BC youngest date for the modelled age range of the outermost section of wood (95.4% probability). One can even remove any constraint from ring counting altogether and model the four radial sections as a simple ordered sequence, in which only the relative position is used as prior information, in other words that outer sections are younger than inner ones in a radial section.

Type
Debate
Copyright
Copyright © Antiquity Publications Ltd. 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–60.Google Scholar
Bronk Ramsey, C., Dee, M. W., Rowland, J. M., Higham, T.F.G., Harris, S. A., Brock, F., Quiles, A., Wild, E. M., Marcus, E. S. & Shortland, A.J.. 2010. Radiocarbon-based chronology for Dynastic Egypt. Science 328: 1554–57. http://dx.doi.org/10.1126/science.1189395 CrossRefGoogle ScholarPubMed
Friedrich, W. L. 2009. Santorini: volcano, natural history, mythology. Aarhus: Aarhus University Press.Google Scholar
Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T. & Talamo, S.. 2006. Santorini eruption radiocarbon dated to 1627-1600 B.C. Science 312: 548. http://dx.doi.org/10.1126/science.1125087 Google Scholar
Hoflmayer, F. 2012. The date of the Minoan Santorini eruption: quantifying the “offset”. Radiocarbon 54: 435–48. http://dx.doi.org/10.2458/azu_js_rc.v54i3-4.16157 Google Scholar
Kutschera, W., Bietak, M., Wild, E. M., Ramsey, C. Bronk, Dee, M., Golser, R., Kopetzky, K., Stadler, P., Steier, P., Thanheiser, U. & Weninger, F.. 2012. The chronology of Tell el-Daba: a crucial meeting point of 14C dating, archaeology, and Egyptology in the 2nd millennium BC. Radiocarbon 54: 407–22. http://ck.doi.org/10.2458/azu4s_rc.v54i3-4.16187 Google Scholar
Manning, S. W. & Kromer, B.. 2012. Considerations of the scale of radiocarbon offsets in the east Mediterranean, and considering a case for the latest (most recent) likely date for the Santorini eruption. Radiocarbon 54: 449–74. http://dx.doi.org/10.2458/azujs_rc.v54i3-4.16169 Google Scholar
Pfeíffer, T. 2003. Two catastrophic volcanic eruptions in the Mediterranean: Santorini 1645 B. C. and Vesuvius 79 A. D. Unpublished PhD dissertation, Aarhus University.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. Bronk, Buck, C.E., Cheng, H., Edwards, R.L., Freidrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E.M., Southon, J.R., Staff, R. A., Turney, C.S.M. & van der Plicht, J.. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55: 1869–87. http://dx.doi.org/10.2458/azu-js_rc.55.16947 Google Scholar
Soter, S. 2011. Radiocarbon anomalies from old CO2 in the soil and canopy air. Radiocarbon 53: 5559.Google Scholar