Skip to main content Accessibility help
×
Home

Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier

  • A. M. MacDonald (a1), A. R. Black (a2), B. É. Ó Dochartaigh (a1), J. Everest (a1), W. G. Darling (a3), V. Flett (a2) and D. W. Peach (a4)...

Abstract

Virkisjökull is a rapidly retreating outlet glacier draining the western flanks of Öræfajökull in SE Iceland. Since 2011 there have been continuous measurements of flow in the proglacial meltwater channel and regular campaigns to sample stable isotopes δ2H and δ18O from the river, ice, moraine springs and groundwater. The stable isotopes provide reliable end members for glacial ice and shallow groundwater. Analysis of data from 2011 to 2014 indicates that although ice and snowmelt dominate summer riverflow (mean 5.3–7.9 m3 s−1), significant flow is also observed in winter (mean 1.6–2.4 m3 s−1) due primarily to ongoing glacier icemelt. The stable isotope data demonstrate that the influence of groundwater discharge from moraines and the sandur aquifer increases during winter and forms a small (15–20%) consistent source of baseflow to the river. The similarity of hydrological response across seasons reflects a highly efficient glacial drainage system, which makes use of a series of permanent englacial channels within active and buried ice throughout the year. The study has shown that the development of an efficient year round drainage network within the lower part of the glacier has been coincident with the stagnation and subsequent rapid retreat of the glacier.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Aðalgeirsdóttir, G and 7 others (2011) Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland. Cryosphere, 5, 961975 (doi: 10.5194/tc-5-961-2011)
Anderson, RS and 6 others (2004) Strong feedbacks between hydrology and sliding of a small alpine glacier. J. Geophys. Res. Earth Surf., (doi: 10.1029/2004JF000120)
Árnason, B (1977) Hydrothermal systems in Iceland traced by deuterium. Geothermics, 5, 125151 (doi: 10.1016/0375-6505(77)90015-3)
Bartholomaus, TC, Anderson, RS and Anderson, SP (2008) Response of glacier basal motion to transient water storage. Nat. Geosci., 1, 3337 (doi: 10.3189/002214311798843269)
Björnsson, H and Pálsson, F (2008) Icelandic Glaciers. Jökull, 58, 365386
Björnsson, H, Pálsson, F, Guðmundsson, MT and Haraldsson, H (1998) Mass balance of western and northern Vatnajökull, Iceland, 1991–1995. Jökull, 50, 118
Bradwell, T, Sigurdsson, O and Everest, J (2013) Recent, very rapid retreat at a temperate maritime glacier in SE Iceland. Boreas, (doi: 10.1111/bor.12014)
Casassa, G, Lopez, P, Pouyaud, B and Escobar, F (2009) Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrol. Process., 23, 3141 (doi: 10.1002/hyp.7194)
Craig, H (1961) Isotopic variations in meteoric waters. Science, 133(3465), 17021703 (doi: 10.1126/science.133.3465.1702)
Dyurgerov, M (2002) Glacier mass balance and regime: data of measurements and analysis. INSTAAR Occasional Paper 55, University of Colorado, Boulder
Einarsson, B and Jónsson, S (2010) The effect of climate change on runoff from two watersheds in Iceland. Icelandic Meteorological Office/Veðurstofa Íslands, Report VÍ 2010-016, Reykjavík
Fenger, J (ed.) (2007) Impacts of climate change on renewable energy resources. Their role in the Nordic energy system. Nordic Council of Ministers, Copenhagen
Guðmundsson, MT (2000) Mass balance and precipitation on the summit plateau of Öræfajökull, SE Iceland. Jökull, 48, 4954
Gully, J and Benn, DI (2007) Structural control of englacial drainage systems in Himalayan debris-covered glaciers. J. Glaciol., 53, 399412 (doi: 10.3189/002214307783258378)
IAEA/WMO (2016) The Global Network of isotopes in precipitation. The GNIP database. IAEA/WMO, Vienna. http://www.iaea.org/water
Jiménez Cisneros, BE and 7 others (2014) Freshwater resources. In Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 229269
Jóhannesson, T and 14 others (2006) The impact of climate change on glaciers and glacier runoff in the Nordic countries. In European Conference on Impacts of Climate Change on Renewable Energy Sources, 5–9 June, Reykjavik, Iceland
Jóhannesson, T and 13 others (2007) Effect of climate change on hydrology and hydro resources in Iceland. National Energy Authority (Orkustofnun) – Hydrological Service, Iceland, VO Project, OS- 2007/011
Kaser, G, Großhauser, M and Marzelon, B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci., 107, 2022320227 (doi: 10.1073/pnas.1008162107)
Kendall, C and McDonnell, JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam
Lutz, AF, Immerzeel, WW, Shrestha, AB and Bierkens, MFP (2014) Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nat. Clim. Change, 4, 587592 (doi: 10.1038/NCLIMATE2237)
Phillips, E, Finlayson, A and Jones, L (2013) Fracturing, block faulting, and moulin development associated with progressive collapse and retreat of a maritime glacier: Falljökull, SE Iceland. J. Geophys. Res. Earth Surf., 118, 15451561 (doi: 10.1002/jgrf.20116)
Phillips, E, Finlayson, A, Bradwell, T, Everest, J and Jones, L (2014) Structural evolution triggers a dynamic reduction in active glacier length during rapid retreat: evidence from Falljökull, SE Iceland. J. Geophys. Res. Earth Surf., 119(10), 21942208 (doi: 10.1002/2014JF003165)
Sveinbjörnsdóttir, AE, Johnsen, S and Arnórsson, S (1995) The use of stable isotopes of oxygen and hydrogen in geothermal studies in Iceland. In World Geothermal Congress, Florence, 10431048

Keywords

Type Description Title
WORD
Supplementary materials

MacDonald supplementary material
Supplementary Table

 Word (28 KB)
28 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed