Skip to main content Accessibility help
×
Home

Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow

  • Christina L. Hulbe (a1), Ian R. Joughin (a2), David L. Morse (a3) and Robert A. Bindschadler (a1)

Abstract

A network of relatively fast-flowing tributaries in the catchment basins of the West Antarctic ice streams transport ice from the inland reservoir to the heads of the ice streams. Branches of the network follow valleys in basal topography but not all valleys contain tributaries. We investigate the circumstances favoring tributary flow upstream of Ice Streams D and E, using a combination of observation and numerical modelling. No consistent pattern emerges. The transition from tributary to ice-stream flow occurs smoothly along the main tributary feeding into the onset of Ice Stream D, with ice thickness being relatively more important upstream, and sliding being relatively more important downstream. Elsewhere, the downstream pattern of flow is more complicated, with local increases and decreases in the contribution of sliding to ice speed. Those changes may be due to variations in basal water storage, subglacial geologic properties or a combination of the two.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow
      Available formats
      ×

Copyright

References

Hide All
Anandakrishnan, S., Blankenship, D. D., Alley, R. B. and Stoffa, P. L.. 1998. Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature, 394(6688), 6265.
Bamber, J. L. and Bindschadler, R. A.. 1997. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol, 25, 439444.
Bell, R. E. and 6 others. 1998. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature, 394(6688), 5862.
Bentley, C. R. 1987. Antarctic ice streams: a review. J. Geophys. Res., 92(B9), 88438858.
Bindschadler, R. A. In press. Onset of streaming flow in West Antarctica. In Alley, R. B. and Miller, H., eds. West Antarctica. Washington, DC, American Geophysical Union. (Antarctic Research Series.)
Budd, W. F. and Jenssen, D.. 1987. Numerical modelling of the large-scale basal water flux under the West Antarctic ice sheet. In Van der Veen, C.J. and Oerlemans, J., eds. Dynamics of the West Antarctic ice sheet. Dordrecht, etc., D. Reidel Publishing Co., 293320. (Glaciology and Quaternary Geology 4.)
Chen, X., Bindschadler, R. A. and Vornberger, P. L.. 1998. Determination of velocity field and strain-rate field in West Antarctica using high precision GPS measurements. Surv. Land Inf. Syst., 58(4), 247255.
Comiso, J. C. 1994. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer. J. Geophys. Res., 99(C3), 51815200.
Fowler, A. C. and Johnson, C.. 1995. Hydraulic run-away: a mechanism for thermally regulated surges of ice sheets. J. Glaciol., 41(139), 554561.
Hooke, R. LeB. 1981. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space phys., 19(4), 664672.
Hulbe, C. L. 1998. Heat balance of West Antarctic ice streams, investigated with numerical models of coupled ice sheet, ice stream, and ice shelf flow. (Ph.D. thesis, University of Chicago.)
Huybrechts, P. 1990. A 3–D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn., 5(2), 7992.
Joughin, I. and 7 others. 1999. Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286(5438), 283286.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Payne, A.J. 1995. Limit cycles in the basal thermal regime of ice sheets. J. Geophys. Res., 100(B3), 42494263.
Rose, K. E. 1979. Characteristics of ice flow in Marie Byrd Land, Antarctica. J. Glaciol., 24(90), 6375.
Tulaczyk, S. M. 1998. Basal mechanics and geologic record of ice streaming, West Antarctica. (Ph.D. thesis, California Institute of Technology.)
Vaughan, D. G., Bamber, J. L., Giovinetto, M. B., Russell, J. and Cooper, A. P. R.. 1999. Reassessment of net surface mass balance in Antarctica. J Climate, 12(4), 933946.
Whillans, I. M. 1977. The equation of continuity and its application to the ice sheet near ˚Byrd" Station, Antarctica. J. Glaciol., 18(80), 359371

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed