Skip to main content Accessibility help
×
Home

Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica

  • Carlos Martín (a1), Francisco Navarro (a1), Jaime Otero (a1), María L. Cuadrado (a1) and María I. Corcuera (a1)...

Abstract

A new three-dimensional finite-element model of the steady-state dynamics of temperate glaciers has been developed and applied to Johnsons Glacier, Livingston Island, Antarctica, with the aim of determining the velocity and stress fields for the present glacier configuration. It solves the full Stokes system of differential equations without recourse to simplifications such as those involved in the shallow-ice approximation. Rather high values of the stiffness parameter B (∼0.19–0.23MPaa1/3) are needed to match the observed ice surface velocities, although these results do not differ much from those found by other authors for temperate glaciers. Best-fit values of the coefficient k in the sliding law (*2.2–2.7 x 103m a–1MPa–2) are also of the same order of magnitude as those found by other authors. The results for velocities are satisfactory, though locally there exist significant discrepancies between computed and observed ice surface velocities, particularly for the vertical ones. This could be due to failures in the sliding law (in particular, the lack of information on water pressure), the use of an artificial down-edge boundary condition and the fact that bed deformation is not considered. For the whole glacier system, the driving stress is largely balanced by the basal drag (80% of the driving stress). Longitudinal stress gradients are only important in the divide areas and near the glacier terminus, while lateral drag is only important at both sides of the terminal zone.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica
      Available formats
      ×

Copyright

References

Hide All
Benjumea, B. and T. Teixidó. 2001. Seismic reflection constraints on the glacial dynamics of Johnsons Glacier, Antarctica. J. Appl. Geophys., 46(1), 3144.
Benjumea, B., Macheret, Y. Ya., Navarro, F.J. and Teixidó, T. (2003) Estimation of water content in a temperate glacier from radar and seismic sounding dat. Ann. Glaciol., 3(7), 7–317
Carey, G.F. and Oden, J.T. (1986) Finite elements: fluid mechanics. Englewood Cliffs, NJ Prentice-Hall
Corcuera, M.I., Navarro, F.J., Martn, C., Calvet, J. and Ximenis, L. (2001) Finite element modelling of the steady-state dynamics of Johnsons Glacie. Mater. Glyatsiol. Issled./Data Glaciol. Stud., 9(0), 0–156
Duval, P. 1977. The role of the water content on the creep rate of polycrystalline ic. International Association of Hydrological Sciences Publication 118 (Symposium at Grenoble 1975 – Isotopes and Impurities in Snow and Ice), 29–33.
Frey, P.J. and George, P.L.(2000). Mesh generation: application to finite elements. Oxford Hermes Science
Furdada, G., Pourchet, M. and Vilaplana, J.M. 1999 Characterization of Johnsons Glacier (Livingston Island, Antarctica) by means of shallow ice cores and their tephra and 137Cs contents. Acta Geol. Hispanica, 34, (4–391
Hanson, B. 1995. A fully three-dimensional finite-element model applied to velocities on Storglaciären, Sweden. J. Glaciol., 41(137), 91102.
Hanson, B., Klink, K., Matsuura, K., Robeson, S.M. and Willmott, C.J. 1992. Vector correlation: review, exposition, and geographic application. Ann. Assoc. Am. Geogr., 82(1), 103116.
Hindmarsh, R.C.A. 2001. Notes on basic glaciological computational methods and algorithms. In Straughan, B., Greve, R., Ehrentraut, H. and Wang, Y., eds. Continuum mechanics and applications in geophysics and the environment,. Berlin, etc., Springer-Verlag, 222–249.
Lliboutry, L. and Duval, P. 1985. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Ann. Geophysicae, 3(2), 207224.
Paterson, W. S. B. (1994) The physics of glaciers. Third edition. Oxford, etc. Elsevier
Quarteroni, A. and Valli, A. (1994) Numerical approximation of partial differential equations. Berlin, etc. Springer-Verlag
Raymond, C.F. and Harrison, W.D. 1988. Evolution of Variegated Glacier, Alaska, USA, prior to its surge. J. Glaciol., 34(117), 154169.
Staniforth, A. and Côté, J. 1991. Semi-Lagrangian integration schemes for atmospheric models: a review. Mon. Weather Rev., 119(9), 22062223.
Van der Veen, C. J. 1996. Tidewater calving. J. Glaciol., 42(141), 375385.
Van der Veen, C. J. (1999) Fundamentals of glacier dynamics. Rotterdam, etc. A.A. Balkema Publishers
Vaughan, D.G. 1993. Relating the occurrence of crevasses to surface strain rates. J. Glaciol., 39(132), 255266.
Vieli, A., Funk, M. and Blatter, H. (2000) Tidewater glaciers: frontal flow acceleration and basal slidin. Ann. Glaciol., 3(1), 1–217
Vieli, A., Funk, M. and Blatter, H. 2001. Flow dynamics of tidewater glaciers: a numerical modelling approach. J. Glaciol., 47(159), 595606.
Ximenis, L. 2001. Dinàmica de la Glacera Johnsons (Livingston, Shetland del Sud, Antàrtida). (PhD thesis, Universitat Barcelona.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed