Skip to main content Accessibility help
×
×
Home

Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery

  • James J. Roush (a1), Craig S. Lingle (a1), Richard M. Guritz (a1), Dennis R. Fatland (a1) (a2) and Vera A. Voronina (a1) (a3)...

Abstract

The initiation and propagation of the 1993–95 surge of Bering Glacier, Alaska, U.S.A., was observed using ERS-1 synthetic aperture radar(SAR) imagery. Images were acquired before and during the surge, between November 1992 and October 1993. Terrain-corrected and co-registered imagery was used to measure the propagation of the surge front. Surface undulations interpreted to be evidence of accelerated flow, indicating surge initiation in late winter, were observed in the 26 March 1993 image. From 19 May to 25 August 1993, the mean propagation velocity of the surge front was 90 m d−1. The surge reached the terminus shortly after 25 August 1993. The central area of the calving terminus then advanced into proglacial Vitus Lake at a mean rate of 19 md−1 between 9 August and 18 October 1993. Feature matching was used to measure discrete velocity vectors between 9 August and 13 September; the vectors were kriged onto a uniform grid and used to compute the principal strain rates. Shattering of the calving front and dramatically increased iceberg calving were accompanied by high compressive strain rates immediately up-glacier from the calving front.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery
      Available formats
      ×

Copyright

References

Hide All
Bindschadler, R. 1982. A numerical model of temperate glacier flow applied to the quiescent phase of a surge-type glacier.J. Glaciol., 28(99),239265.
Bindschadler, R., Harrison, W.D., Raymond, C. F. and Crosson, R.. 1977. Geometry and dynamics of a surge-type glacier. J. Glaciol.,18(79), 181194.
Echelmeyer, K., Butterfield, R. and Cuillard, D..1987. Some observations on a recent surge of Peters Glacier, Alaska, U.S.A. J. Glaciol., 33(115), 341345.
Fatland, D.R. and Lingle, C.S.. 1998. Analysis of the 1993–95 Bering Glacier (Alaska) surge using differential SAR interferometry. J. Glaciol., 44(148), 532546.
Fatland, D. R. and Lingle, C. S.. 2002. InSAR observations of the 1993–95 Bering Glacier (Alaska, U.S.A.) surge and a surge hypothesis. J. Glaciol., 48(162), 439451.
Gudmundsson, G. H., Aðalgeirsdόttir, G. and Björnsson, H.. 2003. Observational verification of predicted increase in bedrock-to-surfaceamplitude transfer during a surge. Ann. Glaciol., 36 (see paper in this volume).
Harrison, W.D., Raymond, C. F. and MacKeith, P.. 1986. Short period motion events on Variegated Glacier as observed by automatic photography and seismic methods. Ann. Glaciol., 8,8289.
Harrison, W. D., Echelmeyer, K. A., Chacho, E.F., Raymond, C. F. and Benedict, R. J.. 1994. The 1987–88 surge of West Fork Glacier, Susitna Basin, Alaska, U.S.A. J. Glaciol., 40(135), 241254.
Isaaks, E. H. and Srivastava, R. M.. 1989. Applied Geostatistics. New York, Oxford University Press.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(), 90839100.
Kamb, B. and 7 others. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479.
Lingle, C. S. and Fatland, D. R.. 2003. Does englacial water storage drive temperate glacier surges? Ann. Glaciol., 36 (see paper in this volume).
Lingle, C. S., Post, A., Herzfeld, U. C., Molnia, B. F., Roush, R.M. and Krimmel, J. J.. 1993. Correspondence. Bering Glacier surge and iceberg-calving mechanism at Vitus Lake, Alaska, U.S.A. J. Glaciol., 39(133),722727.
Meier, M. F. and Post, A.. 1969. What are glacier surges? Can. J. Earth Sci., 6(4), Part 2,807817.
Molnia, B. 1993. Major surge of the Bering Glacier. Eos, 74(29), 321322.
Molnia, B. F. and Post, A.. 1995. Holocene history of Bering Glacier, Alaska: a prelude to the 1993–1994 surge. Phys. Geogr., 16(2), 87117.
Molnia, B. F., Trabant, D. C., Post, A. and Frank-Molnia, D. G.. 1990. Bering Glacier, Alaska: factors influencing the potential for an irreversible calving retreat. [Abstract.] Eos, 71(43), 1314.
Paterson, W. S. B. 1994. The Physics of Glaciers. third edition. Oxford, etc., Elsevier.
Post, A. S. 1960. The exceptional advances of the Muldrow, Black Rapids, and Susitna Glaciers. J. Geophys. Res., 65(11), 37033712.
Post, A. 1969. Distribution of surging glaciers in western North America. J. Glaciol., 8(53), 229240.
Post, A. 1972. Periodic surge origin of folded medial moraines on Bering piedmont glacier, Alaska. J. Glaciol., 11(62), 219226.
Raymond, C. F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92(), 91219134.
Raymond, C., Jόhannesson, T., Pfeffer, T. and Sharp, M.. 1987. Propagationof a glacier surge into stagnant ice. J. Geophys. Res., 92(), 90379049.
Roush, J. J. 1996. The 1993–94 Surge of Bering Glacier, Alaska, Observed With Satellite Synthetic Aperture Radar. (M.Sc. thesis, University of Alaska Fairbanks.)
Voronina, V. A., Fatland, D. R. and Lingle, C. S.. 1995. Analysis of satellite synthetic aperture radar imagery of Alaska and Antarctic radar altimeter data acquired by the First European Remote Sensing Satellite (ERS-1). In Thirty-Sixth Semi-Annual Cray User Group Meeting, Fairbanks, Alaska, September25–29, 19 95. Proceedings. Shepherdstown, WV, Fine Point Editorial Services, 4551.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed