Skip to main content Accessibility help
×
Home

The surface energy budget in the Antarctic summer sea-ice pack

  • Gerd Wendler (a1) and Anthony P. Worby (a2)

Abstract

The surface radiation budget was continuously measured in the sea-ice zone between 140° E (Terre Adélie) and 180° (McMurdo Sound) close to mid-summer, when the sea ice is disintegrating. These measurements were carried out during a cruise of the USCGC Polar Sea from Hobart, Tasmania, to McMurdo station, Antarctica, in 1998/99. Some of the findings are: the solar radiation is the major atmospheric energy source for the melting of ice. The sun was above the horizon for 24 h for most of the cruise. Due to a high amount of fractional cloudiness, the global radiation was somewhat reduced when compared to areas with lesser cloud cover Mean noon values were around 400 W m−2, while at midnight a value of 30 W m−2 was measured. Daily mean values of the net shortwave radiation varied widely, a function of the reflectivity of the surface, which is strongly dependent not only on the ice concentration, but also on the ice type (e.g. whether it is covered with snow, flooded, melting or dry). Detailed ice observations were carried out. Hourly values of the albedo varied from 6% (open water) to 84% (10/10 sea ice with a dry snow cover). The mean net longwave radiation was only modestly negative. The high amount of fractional cloud cover increased the longwave incoming radiation from the atmosphere. A mean value of −40 W m−2 was measured, which displayed only a very weak diurnal course. The sum of the short- and longwave radiation, the total radiation budget, showed the expected diurnal variation, with slightly negative values at night (for 6 h), and a mean maximum at solar noon of around 220 W m−2. A mean daily value of 98 W m−2 was calculated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The surface energy budget in the Antarctic summer sea-ice pack
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The surface energy budget in the Antarctic summer sea-ice pack
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The surface energy budget in the Antarctic summer sea-ice pack
      Available formats
      ×

Copyright

References

Hide All
Allison, I., Tivendale, C. M., Akerman, G.J., Tann, J. M. and Wills, R. H.. 1982. Seasonal variations in the surface energy exchanges over Antarctic sea ice and coastal waters. Ann. Glaciol., 3,12−16.
Allison, I., Brandt, R. E. and Warren, S. G.. 1993. East Antarctic sea ice: albedo, thickness distribution, and snow cover. J. Geophys. Res., 98(C7), 12,417−12,429.
Andreas, E. L. and Makshtas, A. P.. 1985. Energy exchange over Antarctic sea ice in the spring. J. Geophys. Res., 90(C4), 7199−7212
Gloersen, P., Campbell, W.J., Cavalieri, D.J., Comiso, J. C., Parkinson, C. L. and Zwally, H. J.. 1992. Arctic and Antarctic sea ice, 1978−1987: satellite passive-microwave observations and analysis. Washington, DC, National Aeronautics and Space Administration. (NASA SP-511.)
Hauser, H., Wendler, G., Adolphs, U. and Jeffries, M. O.. 1999. Energy exchange in early spring over sea ice in the Pacific sector of the Southern Ocean. J. Geophys. Res., 104(D4), 3925−3935.
König-Langlo, G. and Augstein, E.. 1994. Parameterisation of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorol. Z, 3(6), 343−347.
Makshtas, A. P. 1991. The heat budget of the Arctic ice in the winter. English edition. Cambridge, International Glaciological Society.
Warren, S. G. 1982. Optical properties of snow. Rev. Geophys. Space Phys., 20(1), 67−89.
Weller, G. E. 1968. The heat budget and heat transfer processes in Antarctic plateau ice and sea ice. ANARE Sci. Rep, Ser. A(4) Glaciology 102
Wendler, G., Adolphs, U., Hauser, A. and Moore, B.. 1997. On the surface energy budget of sea ice. J. Glaciol., 43(143), 122−130.
Worby, A. P. and Allison, I.. 1991. Ocean-atmosphere energy exchange over thin variable concentration Antarctic pack ice. Ann. Glacial., 15, 184−190.

The surface energy budget in the Antarctic summer sea-ice pack

  • Gerd Wendler (a1) and Anthony P. Worby (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.