Skip to main content Accessibility help
×
Home

Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study

  • Alison F. Banwell (a1) (a2), Martamaria Caballero (a1) (a3), Neil S. Arnold (a2), Neil F. Glasser (a4), L. Mac Cathles (a1) and Douglas R. MacAyeal (a1)...

Abstract

Supraglacial meltwater lakes trigger ice-shelf break-up and modulate seasonal ice-sheet flow, and are thus agents by which warming is transmitted to the Antarctic and Greenland ice sheets. To characterize supraglacial lake variability we perform a comparative analysis of lake geometry and depth in two distinct regions, one on the pre-collapse (2002) Larsen B ice shelf, Antarctica, and the other in the ablation zone of Paakitsoq, a land-terminating region of the Greenland ice sheet. Compared to Paakitsoq, lakes on the Larsen B ice shelf cover a greater proportion of surface area (5.3% cf. 1%), but are shallower and more uniform in area. Other aspects of lake geometry (e.g. eccentricity, degree of convexity (solidity) and orientation) are relatively similar between the two regions. We attribute the notable difference in lake density and depth between ice-shelf and grounded ice to the fact that ice shelves have flatter surfaces and less distinct drainage basins. Ice shelves also possess more stimuli to small-scale, localized surface elevation variability, due to the various structural features that yield small variations in thickness and which float at different levels by Archimedes’ principle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study
      Available formats
      ×

Copyright

References

Hide All
Banwell, AF, Arnold, NS, Willis, IC, Tedesco, M and Ahlstrøm, AP (2012a) Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet. J. Geophys. Res., 117(F4), F04012 (doi: 10.1029/2012JF002393)
Banwell, AF and 6 others (2012b) Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland. J. Glaciol., 58(212), 10471062 (doi: 10.3189/ 2012JoG12J034)
Banwell, AF, Willis, IC and Arnold, NS (2013) Modeling subglacial water routing at Paakitsoq, W Greenland. J. Geophys. Res., 118 (doi: 10.1002/jgrf.20093)
Bartholomew, ID and 6 others (2011) Seasonal variations in Greenland Ice Sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett., 307(3–4), 271278 (doi: 10.1016/j.epsl.2011.04.014)
Box, JE and Ski, K (2007) Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol., 53(181), 257265 (doi: 10.3189/172756507782202883)
Bromwich, DH and 6 others (2013) Central West Antarctica among the most rapidly warming regions on Earth. Nature Geosci., 6(2), 139145 (doi: 10.1038/ngeo1671)
Chander, G, Markham, BL and Helder, DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ., 113(5), 893903 (doi: 10.1016/j.rse.2009.01.007)
Collins, IF and McCrae, IR (1985) Creep buckling of ice shelves and the formation of pressure rollers. J. Glaciol., 31(109), 242252
Darnell, KN, Amundson, JM, Cathles, LM and MacAyeal, DR (2013) The morphology of supraglacial lake ogives. J. Glaciol., 59(215), 533544 (doi: 10.3189/2013JoG12J098)
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Doyle, SH and 9 others (2013) Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet. Cryosphere, 7(1), 129140 (doi: 10.5194/tc-7-129-2013)
Echelmeyer, K, Clarke, TS and Harrison, WD (1991) Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. J. Glaciol., 37(127), 368382
Fitzpatrick, AAW and 9 others (2013) A decade of supraglacial lake volume estimates across a land-terminating margin of the Greenland Ice Sheet. Cryos. Discuss., 7(2), 13831414 (doi: 10.5194/tcd-7-1383-2013)
Glasser, NF and Gudmundsson, GH (2012) Longitudinal surface structures (flowstripes) on Antarctic glaciers. Cryosphere, 6(2), 383391 (doi: 10.5194/tc-6-383-2012)
Glasser, NF and Scambos, TA (2008) A structural glaciological analysis of the 2002 B Larsen ice-shelf collapse. J. Glaciol., 54(184), 316 (doi: 10.3189/002214308784409017)
Glasser, N and 7 others (2009) Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J. Glaciol., 55(191), 400410 (doi: 10.3189/002214309788816597)
Glasser, NF, Scambos, TA, Bohlander, J, Truffer, M, Pettit, EC and Davies, BJ (2011) From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Röhss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula. J. Glaciol., 57(203), 397406 (doi: 10.3189/002214311796905578)
Gudmundsson, GH (2003) Transmission of basal variability to a glacier surface. J. Geophys. Res., 108(B5), 2253 (doi: 10.1029/ 2002JB0022107)
Hambrey, MJ and Dowdeswell, JA (1994) Flow regime of the Lambert Glacier–Amery Ice Shelf system, Antarctica: structural evidence from Landsat imagery. Ann. Glaciol., 20, 401406
Hattersley-Smith, G (1957) The rolls on the Ellesmere ice shelf. Arctic, 10(1), 3244
Hoffman, MJ, Catania, GA, Neumann, TA, Andrews, LC and Rumrill, JA (2011) Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res., 116(F4), F04035 (doi: 10.1029/2010JF001934)
Ingle, JD and Crouch, SR (1988) Spectrochemical measurements. In Ingle JD and Crouch SR eds. Spectrochemical analysis. Prentice Hall, Upper Saddle River, NJ
Johansson, AM, Jansson Pand Brown, IA (2013) Spatial and temporal variations in lakes on the Greenland Ice Sheet. J. Hydrol., 476, 314320 (doi: 10.1016/j.jhydrol.2012.10.045)
Joughin, I and 9 others (2013) Influence of supraglacial lakes and ice-sheet geometry on seasonal ice-flow variability. Cryos. Discuss., 7(2), 11011118 (doi: 10.5194/tcd-7-1101-2013)
LaBarbera, CH and MacAyeal, DR (2011) Traveling supraglacial lakes on George VI Ice Shelf, Antarctica. Geophys. Res. Lett., 38(24), L24501 (doi: 10.1029/2011GL049970)
Lampkin, DJ and Vanderberg, J (2011) A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near Jakobshavn Isbræ, western Greenland. Hydrol. Process., 25(21), 33473355 (doi: 10.1002/ hyp.8170)
Leeson, AA, Shepherd, A, Palmer, S, Sundal, A and Fettweis, X (2012) Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet. Cryosphere, 6(5), 10771086 (doi: 10.5194/tc-6-1077-2012)
Liang, Y-L and 7 others (2012) A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ., 123, 127138 (doi: 10.1016/j.rse.2012.03.020)
Lüthje, M, Pedersen, LT, Reeh, N and Greuell, W (2006) Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol., 52(179), 608618 (doi: 10.3189/ 172756506781828386)
MacAyeal, DR and Sergienko, OV (2013) The flexural dynamics of melting ice shelves. Ann. Glaciol., 54(63 Pt 1), 110 (doi: 10.3189/2013AoG63A256)
McGrath, D, Steffen, K, Rajaram, H, Scambos, T, Abdalati, W and Rignot, E (2012) Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett., 39(16), L16504 (doi: 10.1029/ 2012GL052413)
Mobley, CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego
Phillips, HA (1998) Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 27, 177181
Philpot, WD (1989) Bathymetric mapping with passive multispectral imagery. Appl. Opt., 28(8), 15691578
Rignot, E and Thomas, RH (2002) Mass balance of polar ice sheets. Science, 297(5586), 15021506 (doi: 10.1126/science.1073888)
Rott, H, Müller, F, Nagler, T and Floricioiu, D (2011) The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere, 5(1), 125134 (doi: 10.5194/tc-5-125-2011)
Sandhäger, H, Rack, W and Jansen, D (2005) Model investigations of Larsen B Ice Shelf dynamics prior to the breakup. FRISP Rep. 16, 512
Scambos, TA, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516530 (doi: 10.3189/172756500781833043)
Scambos, T, Hulbe, C and Fahnestock, M (2003) Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack EW, Burnett A, Leventer A, Conley P, Kirby M and Bindschadler R eds. Antarctic Peninsula climate variability: a historical and paleoenvironmental perspective. American Geophysical Union, Washington, DC, 7992
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402 (doi: 10.1029/2004GL020670)
Scambos, T and 7 others (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett., 280(1–4), 5160 (doi: 10.1016/j.epsl.2008.12.027)
Selmes, N, Murray Tand James, TD (2011) Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett., 38(15), L15501 (doi: 10.1029/2011GL047872)
Sergienko, OV (2013) Glaciological twins: basally controlled subglacial and supraglacial lakes. J. Glaciol., 59(213), 38 (doi: 10.3189/2013JoG12J040)
Sergienko, O and MacAyeal, DR (2005) Surface melting on Larsen Ice Shelf, Antarctica. Ann. Glaciol., 40, 215218 (doi: 10.3189/ 172756405781813474)
Sneed, WA and Hamilton, GS (2007) Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophys. Res. Lett., 34(3), L03501 (doi: 10.1029/2006GL028697)
Sneed, WA and Hamilton, GS (2011) Validation of a method for determining the depth of glacial melt ponds using satellite imagery. Ann. Glaciol., 52(59), 1520 (doi: 10.3189/ 172756411799096240)
Tedesco, M and 7 others (2012) Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland. Geophys. Res. Lett., 39(2), L02502 (doi: 10.1029/ 2011GL049882)
Tedesco, M, Willis, IC, Hoffman, MJ, Banwell, AF, Alexander, P and Arnold, NS (2013) Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett., 8(3), 034007 (doi: 10.1088/1748-9326/8/3/034007)
Thomsen, HH, Thorning, L and Braithwaite, RJ (1988) Glacier-hydrological conditions on the Inland Ice north-east of Jacobshavn/Ilulissat, West Greenland. Rapp. Grønl. Geol. Unders. 138
Van den Broeke, M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32(12), L12815 (doi: 10.1029/2005GL023247)
Van der Veen, CJ (1998) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol., 27(1), 3147
Van der Veen, CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501 (doi: 10.1029/2006GL028385)
Vaughan, DG (2008) West Antarctic Ice Sheet collapse – the fall and rise of a paradigm. Climatic Change, 91(1–2), 6579 (doi: 10.1007/s10584-008-9448-3)
Vieli, A, Payne, AJ, Du, Z and Shepherd, A (2006) Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 18151839 (doi: 10.1098/rsta.2006.1800)

Keywords

Related content

Powered by UNSILO

Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study

  • Alison F. Banwell (a1) (a2), Martamaria Caballero (a1) (a3), Neil S. Arnold (a2), Neil F. Glasser (a4), L. Mac Cathles (a1) and Douglas R. MacAyeal (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.