Skip to main content Accessibility help

Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model

  • Andrew Roberts (a1), Anthony Craig (a1), Wieslaw Maslowski (a1), Robert Osinski (a2), Alice Duvivier (a3), Mimi Hughes (a3), Bart Nijssen (a4), John Cassano (a3) and Michael Brunke (a5)...


This work evaluates the fidelity of the polar marine Ekman layer in the Regional Arctic System Model (RASM) and Community Earth System Model (CESM) using sea-ice inertial oscillations as a proxy for ice-ocean Ekman transport. A case study is presented that demonstrates that RASM replicates inertial oscillations in close agreement with motion derived using the GPS. This result is obtained from a year-long case study pre-dating the recent decline in perennial Arctic sea ice, using RASM with sub-hourly coupling between the atmosphere, sea-ice and ocean components. To place this work in context, the RASM coupling method is applied to CESM, increasing the frequency of oceanic flux exchange from once per day in the standard CESM configuration, to every 30 min. For a single year simulation, this change causes a considerable increase in the median inertial ice speed across large areas of the Southern Ocean and parts of the Arctic sea-ice zone. The result suggests that processes associated with the passage of storms over sea ice (e.g. oceanic mixing, sea-ice deformation and surface energy exchange) are underestimated in Earth System Models that do not resolve inertial frequencies in their marine coupling cycle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model
      Available formats



Hide All
Bi, D and 27 others (2013) The ACCESS coupled model: description, control climate and evaluation. Austral. Meterol. Oceanogr. J., 63(1), 4164
Bitz, CM and Lipscomb, WH (1999) An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104(C7), 15 699–15 677 (doi: 10.1029/1999JC900100)
Bitz, CM, Holland, MM, Weaver, AJ and Eby, M (2001) Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res.,106(C), 22441
Briegleb, BP and Light, B (2007) A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. (NCAR Tech. Note NCAR/TN-472+STR) National Center for Atmospheric Research, Boulder, CO
Bromwich, DH, Hines, KM and Bai L-S (2009) Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114(D8), D08122 (doi: 10.1029/2008JD010300)
Brunke, MA, Zhou, M, Zeng, X and Andreas, EL (2006) An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. J. Geophys. Res., 111(C9), C09001 (doi: 10.1029/2005JC002907)
Campbell, GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci.,117(6), 311314
Campin, J-M, Marshall, J and Ferreira, D (2008) Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Model., 24(1–2), 1–14 (doi: 10.1016/j.ocemod.2008.05.005)
Chen, C and 7 others (2009) A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): an application for tidal studies. J. Geophys. Res., 114(C8), C08017 (doi: 10.1029/2008JC004941)
Collins, WD and 7 others (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). (NCAR Tech. Note NCAR/TN-464+STR) National Center for Atmospheric Research, Boulder, CO
Craig, AP, Vertenstein, M and Jacob, R (2012) A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl.,26(1), 3142 (doi: 10.1177/ 1094342011428141)
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc.,137(656), 553597 (doi: 10.1002/qj.828)
Dorn, W and 6 others (2007) Sensitivities and uncertainties in a coupled regional atmosphere–ocean–ice model with respect to the simulation of Arctic sea ice. J. Geophys. Res., 112(D10), D10118 (doi: 10.1029/2006JD007814)
Dosser, HV, Rainville, L and Toole, JM (2014) Near-inertial internal wave field in the Canada Basin from ice-tethered profilers. J. Phys. Oceanogr.,44(2), 413426 (doi: 10.1175/JPO-D-13-0117.1)
Dümenil, L and Todini, E (1992) A rainfall–runoff scheme for use in the Hamburg climate model. In O’Kane JP ed. Advances in theoretical hydrology: a tribute to James Dooge. (European Geophysical Society Series on Hydrological Sciences 1) Elsevier, Amsterdam, 129–157
DuVivier, AK and Cassano, JJ (2013) Evaluation of WRF model resolution on simulated mesoscale winds and surface fluxes near Greenland. Mon. Weather Rev.,141(3), 941963 (doi: 10.1175/MWR-D-12-00091.1)
Ek, MB and 7 others (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), 8851 (doi: 10.1029/2002JD003296)
Emery, WJ and Thomson, RE (2004) Data analysis methods in physical oceanography, 2nd edn. Elsevier, Amsterdam Fer, I (2014) Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr.,44(8), 20312049 (doi: 10.1175/JPO-D-13-0133.1)
Geiger, CA and Perovich, DK (2008) Springtime ice motion in the western Antarctic Peninsula region. Deep-Sea Res. II, 55(3–4), 338–350 (doi: 10.1016/j.dsr2.2007.11.008)
Gent, PR and 12 others (2011) The Community Climate System Model Version 4. J. Climate,24(19), 49734991 (doi: 10.1175/ 2011JCLI4083.1)
Gimbert, F, Jourdain, NC, Weiss, J and Barnier, B (2012a) Recent mechanical weakening of the Arctic sea ice cover as revealed from larger inertial oscillations. J. Geophys. Res., 117(C11), C00J112 (doi: 10.1029/2011JC007633)
Gimbert, F, Marsan, D, Weiss J, Jourdain NC and Barnier B (2012b) Sea ice inertial oscillations in the Arctic Basin. Cryosphere,6(5), 11871201 (doi: 10.5194/tc-6-1187-2012)
Griffies, SM (2010) Elements of MOM4p1.(GFDL Ocean Group Tech. Rep. 6) National Oceanic and Atmospheric Administration/ Geophysical Fluid Dynamics Laboratory, Princeton, NJ
Grinsted, A, Moore, JC and Jevrejeva, S (2004) Application of the cross wavelet transform and wavelet coherence in geophysical time series. Nonlinear Process. Geophys., 11(5–6), 561–566 (doi: 10.5194/npg-11-561-2004)
Guthrie, JD, Morison, JH and Fer, I (2013) Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res.,118(8), 39663977 (doi: 10.1002/jgrc.20294)
Hallberg, R (2014) Numerical instabilities of the ice/ocean coupled system. CLIVAR Exch., 65(19/2), 38–42
Heil, P and Hibler, WD, III (2002) Modeling the high-frequency component of Arctic sea ice drift and deformation. J. Phys. Oceanogr., 32(11), 30393057 (doi: 10.1175/1520-0485(2002) 0323039:MTHFCO2.0.CO;2)
Hibler, WD, III (1979) A dynamic thermodynamic sea ice model. J. Phys. Oceanogr.,9(7), 815846 (doi: 10.1175/1520-0485 (1979)0090815:ADTSIM2.0.CO;2)
Hibler, WD, III (1980) Modeling a variable thickness sea ice cover. Mon. Weather Rev.,108(12), 19431973 (doi: 10.1175/1520- 0493(1980)1081943:MAVTSI2.0.CO;2)
Hibler, WD, III, Heil, P and Lytle, VI (1998) On simulating high frequency variability in Antarctic sea-ice dynamics models. Ann. Glaciol., 27, 443448
Hibler, WD, III, Roberts, A, Heil, P, Proshutinsky, AY, Simmons, HL and Lovick, J (2006) Modeling M2 tidal variability in Arctic seaice drift and deformation. Ann. Glaciol., 44, 418428 (doi: 10.3189/172756406781811178)
Hines, KM and Bromwich, DH (2008) Development and testing of polar weather research and forecasting (WRF) model. Part I: Greenland ice sheet meteorology. Mon. Weather Rev.,136(6), 19711989 (doi: 10.1175/2007MWR2112.1)
Holloway, G and Proshutinsky, A (2007) Role of tides in Arctic ocean/ice climate. J. Geophys. Res., 112(C4), C04S06 (doi: 10.1029/2006JC003643)
Hormazabal, S, Shaffer, G and Leth, O (2004) Coastal transition zone off Chile. J. Geophys. Res., 109(C1), C01021 (doi: 10.1029/ 2003JC001956)
Hunke, EC and Dukowicz, JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr.,27(9), 18491867 (doi: 10.1175/1520-0485(1997)0271849:AEVPMF2.0.CO;2)
Hunke, EC and Lipscomb, WH (2010) CICE: the Los Alamos sea ice model documentation and software user's manual, Version 4.1. (Tech. Rep. LA-CC-06-012) Los Alamos National Laboratory, Los, A lamos, NM
Hunkins, K (1967) Inertial oscillations of Fletcher's Ice Island (T-3). J. Geophys. Res.,72(4), 11651174 (doi: 10.1029/ JZ072i004p01165)
Hurrell, JW and 22 others (2013) The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc.,94(9), 13391360 (doi: 10.1175/BAMS-D-12- 00121.1)
Karvonen, J (2014) A sea ice concentration estimation algorithm utilizing radiometer and SAR data. Cryosphere,8(5), 16391650 (doi: 10.5194/tc-8-1639-2014)
Kowalik, Z and Proshutinsky, AY (1994) The Arctic Ocean tides. In Johannessen, OM, Muench, RD and Overland, JE ed. The polar oceans and their role in shaping the global environment: the Nansen Centennial volume. (Geophysical Monograph 85) American Geophysical Union, Washington, DC, 137–158
Kwok, R, Cunningham GF and Hibler WD, III (2003) Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys. Res. Lett., 30(23), 2218 (doi: 10.1029/2003GL018723)
Lammert, A, Brummer, B and Kaleschke, L (2009) Observation of cyclone-induced inertial sea-ice oscillation in Fram Strait. Geophys. Res. Lett., 36(10), L10503 (doi: 10.1029/2009GL037197)
Large, WG and Yeager, SG (2008) The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33(2–3), 341–364 (doi: 10.1007/s00382-008-0441-3)
Large, WG, Williams, JC and Doney, SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys.,32(4), 397422 (doi: 10.1029/ 94RG01872)
Lawrence, D and 11 others (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3(M3), M03001 (doi: 10.1029/2011MS000045)
Leppäranta, M, Oikkonen, A, Shirasawa, K and Fukamachi, Y (2012) A treatise on frequency spectrum of drift ice velocity. Cold Reg. Sci. Technol., 76–77, 8391 (doi: 10.1016/j.coldregions. 2011.12.005)
Liang, X, Lettenmaier, DP, Wood, EF and Burges, SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99(D7), 14 415–14 428 (doi: 10.1029/94JD00483)
Lipscomb, WH (2001) Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106(C7), 13 989–14 000 (doi: 10.1029/2000JC000518)
Lipscomb, WH and Hunke, EC (2004) Modeling sea ice transport using incremental remapping. Mon. Weather Rev.,132(6), 13411354 (doi: 10.1175/1520-0493(2004)1322.0.CO;2)
Lipscomb, WH, Hunke, EC, Maslowski, W and Jakacki, J (2007) Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112(C3), C03S91 (doi: 10.1029/ 2005JC003355)
Liu, PC and Miller, GS (1996) Wavelet transforms and ocean current data analysis. J. Atmos. Oceanic Technol.,13(5), 10901099 (doi: 10.1175/1520-0426(1996)0132.0.CO;2)
Maraun, D and Kurths, J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process. Geophys.,11(4), 505514 (doi: 10.5194/npg-11-505-2004)
Martini, KI, Simmons, HL, Stoudt, CA and Hutchings, JK (2014) Near-inertial internal waves and sea ice in the Beaufort Sea. J. Phys. Oceanogr.,44(8), 22122234 (doi: 10.1175/JPO-D-13- 0160.1)
Maslowski, W and Lipscomb, WH (2003) High resolution simulations of Arctic sea ice, 1979–1993. Polar Res.,22(1), 6774 (doi: 10.1111/j.1751-8369.2003.tb00097.x)
Maslowski, W, Clement Kinney, JL, Marble, DC and Jakacki, J (2008) Towards eddy-resolving models of the Arctic Ocean. In Hecht, MW and Hasumi, H eds. Ocean modeling in an eddying regime. American Geophysical Union, Washington, DC
Maslowski, W, Clement Kinney, J, Higgins, M and Roberts, A (2012) The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci., 40, 625654 (doi: 10.1146/annurev-earth-042711-105345)
McPhee, MG (1978) A simulation of inertial oscillation in drifting pack ice. Dyn. Atmos. Oceans,2(2), 107122 (doi: 10.1016/ 0377-0265(78)90005-2)
McPhee, MG (1988) Analysis and prediction of short-term ice drift. J. Offshore Mech. Arct. Eng. ASME,110(1), 94100 (doi: 10.1115/1.3257130)
McPhee, M (2008) Air–ice–ocean interaction: turbulent ocean boundary layer exchange processes. Springer, New, Y ork
Meier, W (2013) Climate Data Record Program (CDR): climate algorithm theoretical basis document (C-ATBD), passive microwave sea ice concentration. (CDR Document No. CDRP-ATBD- 0107) National Oceanic and Atmospheric Administration, Washington, DC conc_cdr/pdf/SeaIce_CDR_CATBD_final.pdf
Mirollo, RE and Strogatz, SH (2005) The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D, 205(1–4), 249–266 (doi: 10.1016/j.physd.2005.01.017)
Morrison, H, Thompson, G and Tatarskii, V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and twomoment schemes. Mon. Weather Rev.,137(3), 9911007 (doi: 10.1175/2008MWR2556.1)
Neale, RB and 23 others (2012) Description of the NCAR Community Atmosphere Model (CAM 5.0). (NCAR Tech. Note NCAR/TN-486+STR) National Center for Atmospheric Research, Boulder, CO
Park, JJ, Kim, K and King, BA (2005) Global statistics of inertial motions. Geophys. Res. Lett., 32(14), L14612 (doi: 10.1029/ 2005GL023258)
Park, JJ, Kim, K and Schmitt, RW (2009) Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res., 114(C11), C11010 (doi: 10.1029/2008JC005216)
Pnyushkov, AV and Polyakov, IV (2012) Observations of tidally induced currents over the continental slope of the Laptev Sea, Arctic Ocean. J. Phys. Oceanogr.,42(1), 894 (doi: 10.1175/ JPO-D-11-064.1)
Priestley, MB (1981) Spectral analysis and time series. Academic Press, London Rainville, L and Woodgate, RA (2009) Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36(23), L23604 (doi: 10.1029/2009GL041291)
Rath, W, Greatbatch, RJ and Zhai, X (2014) On the spatial and temporal distribution of near-inertial energy in the Southern Ocean. J. Geophys. Res.,119(1), 359376 (doi: 10.1002/ 2013JC009246)
Roberts, A and 7 others (2010) A science plan for regional Arctic system modeling: a report by the Arctic Research Community for the National Science Foundation Office of Polar Programs. (Tech. Pap. 10-0001) International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK default/files/publications/reports/IARCTP10-0001.pdf
Rothrock, DA (1975) The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res.,80(33), 45144519 (doi: 10.1029/JC080i033p04514)
Simmonds, I and Rudeva, I (2012) The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39(23), L23709 (doi: 10.1029/ 2012GL054259)
Skamarock, W and 7 others (2008) A description of the Advanced Research WRF Version 3. (NCAR Tech. Note NCAR/TN-475 +STR) University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR)/ UCAR Community Programs (UCP), Boulder, CO (doi: 10.5065/D68S4MVH)
Smith, R and 19 others (2010) The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). (Tech. Rep. LAUR-10-01853) Los Alamos National Laboratory, Los, A lamos, NM cesm1.0/pop2/doc/sci/POPRefManual.pdf
Steele, M, Morley, R and Ermold, W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J. Climate,14(9), 20792087 (doi: 10.1175/1520-0442(2001)0142079: PAGOHW2.0.CO;2)
Stocker, TF and 9 others eds (2013). Climate change 2013: the physical science basis. Contribution of Working Group, I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
Thorndike, AS, Rothrock, DA, Maykut, GA and Colony, R (1975) The thickness distribution of sea ice. J. Geophys. Res.,80(33), 45014513 (doi: 10.1029/JC080i033p04501)
Todini, E (1996) The ARNO rainfall–runoff model. J. Hydrol., 175(1–4), 339–382 (doi: 10.1016/S0022-1694(96)80016-3)
Torrence, C and Compo, GP (1998) A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc.,79(1), 6178 (doi: 10.1175/ 1520-0477(1998)0790061:APGTWA2.0.CO;2)
Zhao, R-J, Zuang, Y-L, Fang, L-R, Liu, X-R and Zhang, Q-S (1980) The Xinanjiang model. IAHS Publ.129 (Symposium at Oxford 1980 –. Hydrological Forecasting), 351–356



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed