Skip to main content Accessibility help
×
Home

Rheological measurements of the viscoelastic properties of snow

  • Christian Camponovo (a1) and Jürg Schweizer (a1)

Abstract

In order to determine the viscoelastic properties of snow, torsional shear measurements were performed in a cold laboratory with a stress-controlled rheometer. Small samples (60 mm in diameter and about 7 mm thick of natural snow collected from the nearby study plot were loaded in simple shear with monotonically increasing stress (stress ramp) and with sinusoidally varying stress (oscillation). The dynamic measuring method allows the deformation process to be separated into a time-independent part (elastic) and a time-dependent part (viscous). The applied torque is sufficiently small to prevent destructive deformation, generally permitting the true viscoelastic properties of a sample to be obtained over a large range of frequency and temperature. The limit strain for linear viscoelastic deformation was found to be very small (0.5−5 × 10−4). Experiments performed beyond the linear range imply important textural changes (damage, breaking of bonds). The large strain reached during stress-ramp experiments showed that the ongoing damage process must be balanced by a healing (sintering) process. The usefulness of a rheometer was proven. It is a precise method for measuring with high reproducibility the rheological parameters of snow, and data gained with it improve our understanding of the deformation process under shear loading.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Rheological measurements of the viscoelastic properties of snow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Rheological measurements of the viscoelastic properties of snow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Rheological measurements of the viscoelastic properties of snow
      Available formats
      ×

Copyright

References

Hide All
Budd, W. F and Jacka, T. H.. 1989. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol, 16(2), 107144.
Carreau, P.J., de Kee, D. C. R. and Chahabra, R.P.. 1997. Rheology of polymeric systems: principles and applications. Munich, Hanser Publisher.
Chae, Y. S. 1967. Frequency dependence of dynamic moduli of, and damping in snow. In Oura, H., ed. Physics of snow and ice. Vol. 1, Part2. Sapporo, Hokkaido University. Institute of Low Temperature Science, 827842.
De Montmollin, V. 1978. Introduction à la rheologie de la neige. (These de doctorat, Universite Scientifique et Medicale de Grenoble.)
De Montmollin, V. 1982. Shear tests on snow explained by fast metamorphism. J. Glaciol, 28(98), 187198.
Feldt, E.D. and Ballard, G. E.H.. 1966. A theory of the consolidation of snow. J. Glaciol, 6(43), 145157.
Hansen, A.C. and Brown, R. L.. 1987. A new constitutive theory for snow based on a micromechanical approach. International Association of Hydrological Sciences Publication 162 (Symposium at Davos 1986-Avalanche Formation, Movement and Effects), 87104.
Jaeger, J. C. 1969. Elasticity,fracture and flow: with engineering and geological applications. Third edition. London, Methuen and Co. Ltd. and Science Paperbacks.
Kinosita, S. 1967. Compression of snow at constant speed. In Oura, H., ed. Physics of snow and ice. Vol. 1, Part 2 Sapporo, Hokkaido University. Institute of LowTemperature Science, 911927.
Makosko, C. W. 1994. Rheology. Principles, measurements and applications. Weinheim, VCH Publishers.
Mellor, M. 1975. A review of basic snow mechanics. International Assocation of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974-Snow Mechanics), 251291.
Nakaya, U. 1959. Visco-elastic properties of snow and ice in the Greenland ice cap . SIPRE Res. Rep AG.
Narita, H. 1983. An experimental study on tensile fracture of snow. Contrib. Inst. Low Temp.Sci.,Ser. A 32,137.
Navarre, J. -P. and Desrues, J.. 1978. Loi rheologique incremental de la neige. In Deuxième Rencontre Internationale sur la Neige et les Avalanches, 12–13 et 14 avril 1978, Grenoble, France. Comptes Rendus. Grenoble, Association Nationale pour l’Étude de la Neige et des Avalanches, 105113.
Petrenko, V F and Whitworth, R.W.. 1999. Physics of ice. Oxford, etc, Oxford University Press.
St. Lawrence, W. and Bradley, C. C.. 1975. Deformation of snow in terms of a structural mechanism. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974––Snow mechanics), 155170.
Schweizer, J. 1998. Laboratory experiments on shear failure of snow. Ann. Glaciol., 26, 97–102.
Schweizer, J. 1999. Review on dry snow slab avalanche release. Cold Reg. Sci. Technol, 30(1–3), 4357.
Shapiro, L. H., Johnson, J. B., Sturm, M. and Blaisdell, G. L.. 1997. Snow mechanics: review of the state of knowledge and applications. CRREL Rep. 97–3.
Shinojima, K. 1967. Study on the visco-elastic deformation of deposited snow. In Oura, H., ed. Physics of snow and ice. Vol. 1, Part 2 Sapporo, Hokkaido University. Institute of LowTemperature Science, 875907.
Whorlow, R.W. 1992. Rheological techniques. New York, Ellis Horwood.
Yosida, Z. 1956. Physical studies on deposited snow. 2. Mechanical properties (1). Contrib. Inst. Low Temp. Sci., Ser. A 9,181

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed