Skip to main content Accessibility help
×
Home

Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica

  • Gwendolyn J.-M. C. Leysinger Vieli (a1), Martin J. Siegert (a1) and Antony J. Payne (a1)

Abstract

Understanding how ice sheets responded to past climate change is fundamental to forecasting how they will respond in the future. Numerical models calculating the evolution of ice sheets depend upon accumulation data, which are principally available from ice cores. Here, we calculate past rates of ice accumulation using internal layering. The englacial structure of the East Antarctic ice divide at ridge B is extracted from airborne ice-penetrating radar. The isochronous surfaces are dated at their intersection with the Vostok ice-core site, where the depth–age relationship is known. The dated isochrons are used as input to a one-dimensional ice-flow model to investigate the spatial accumulation distribution. The calculations show that ice-accumulation rates generally increase from Vostok lake towards ridge B. The western flank of the ice divide experiences markedly more accumulation than in the east. Further, ice accumulation increases northwards along the ice divide. The results also show the variability of accumulation in time and space around the ridge B ice divide over the last 124 000 years.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica
      Available formats
      ×

Copyright

References

Hide All
Dansgaard, W. and Johnsen, S.J. 1969. A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol., 8(53), 215223.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. and Gogineni, P. 2001a. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294(5550), 23382342.
Fahnestock, M.A., Abdalati, W., Luo, S. and Gogineni, S. 2001b. Internal layer tracing and age–depth–accumulation relationships for the northern Greenland ice sheet. J. Geophys. Res., 106(D24), 33,78933,797.
Kwok, R., Siegert, M.J. and Carsey, F.D. 2000. Ice motion over Lake Vostok, Antarctica: constraints on inferences regarding the accreted ice. J. Glaciol., 46(155), 689694.
Nye, J.F. 1959. The motion of ice sheets and glaciers. J. Glaciol., 3(26), 493507.
Nye, J.F. 1963. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol., 4(36), 785788.
Paterson, W.S.B. (1994) The physics of glaciers. Third edition. Oxford etc. Elsevier
Petit, J.-R. and 1. others. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429436.
Siegert, M.J. 2003.Glacial–interglacial variations in central East Antarctic ice accumulation rates. Quat. Sci. Rev, 22(5–7), 741750.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed