Skip to main content Accessibility help
×
Home

Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion

  • Jeffrey C. Strasser (a1), Daniel E. Lawson (a2), Grahame J. Larson (a3), Edward B. Evenson (a1) and Richard B. Alley (a4)...

Abstract

The stratified-facies ice of the basal zone of Matanuska Glacier, Alaska. U.S.A., contains significant concentrations of anthropogenic tritium, whereas unaltered englacial-zone ice is devoid of tritium. Supercooled water flowing through subglacial conduits during the melt season likewise contains tritium, as does frazil and other platy ice that nucleates and grows within this subglacially flowing water. These initial results demonstrate net accretion of more than 1.4 m of stratified basal-zone ice since initiation of above-ground, thermonuclear bomb testing in 1952. Furthermore, these results support a theory of basal ice formation by ice accretion and debris entrainment from supercooled water within a distributed subglacial drainage system.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. In press. Toward a hydrologic model for computerized ice-sheet simulations. Hydrological Processes.
Alley, R. B. and MacAyeal, D. R. 1994. Ice-rafted debris associated with binge/purge oscillations of the Laurentide ice sheet. Paleoceanography, 9(1), 503-511.
Arcone, S. A., Lawson, D. E and Delaney, A. J. 1995. Short-pulse radar wavelet recovery and resolution of dielectric contrasts within englacial and basal ice of Matanuska Glacier, Alaska, U.S.A. J. Glaciol., 41(137), 68-86.
Boulton, G. S. 1972. The role of thermal régime in glacial sedimentation. Inst. British Geogr. Spec. Pub., 4, 1-19.
Clarke, G. K. C., Collins, S. G and Thompson, D. E. 1984. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 233-240.
Gat, J. R. 1980. The isotopes of hydrogen and oxygen in precipitation. In Fritz, P. and Fontes, J. C, eds. Handbook of environmental isotope geochemistry. Amsterdam, Elsevier, 21-47.
Gow, A. J., Epstein, S. and Sheeny, W. 1979. On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23(89), 185-192.
Hooke, R. LeB. and Pohjola, V. A. 1994. Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden. J. Glaciol., 40(134), 140-148.
Iken, A. and Bindschadler, R. A. 1986. Combined measurements of subglacial water pressure and surface velocity at Findelengletseher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101-119.
Iken, A., Röthlisberger, H. Flotron, A. and Haeberli, W. 1983. The uplift of Unteraargletscher at the beginning of the melt season — a consequence of water storage at the bed? J. Glaciol., 29(101), 28-47.
Iverson, N. R. 1993. Regulation of ice through debris at glacier beds: implications for sediment transport. Geology, 21(6), 559-562.
Kessler, M. J. 1988. Effective use of low level liquid scintillation analysis. Proceedings. Strmiti International Seminar for Liquid Scintillation Analysis, 8 June 1988. Tokyo, Japan. 256-301.
Lawson, D. E. 1979. A sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. CRREI. Rep. 79-9.
Lawson, D. E. 1986. Observations on hydraulic and thermal conditions at the bed of Matanuska Glacier, Alaska. Eidg. Tech. Hochschule, Zürich. Versuchsanst. Wasserbau. Hydrol. Glaziol. Milt. 90, 69-71.
Lawson, D. E. and Kulla, J. B. 1978. An oxygen isotope investigation of the origin of the basal zone of the Matanuska Glacier, Alaska. J. Geol., 86(6), 673-685.
Lawson, D. E., Evenson, E. B, Strasser, J. C, Alley, R. B and Larson, G. J. In press. Subglacial supercooling, ice accretion, and sediment entrainment at the Matanuska Glacier, Alaska. Geological Society of America, Abstracts with Programs, 28.
Lehmann, M. and Siegenthaler, U. 1991. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J. Glaciol., 37(125), 23-26.
Leventhal, J. S. and Libby, W. F. 1970. Tritium fallout in the Pacific United States, J. Geophys. Res., 75(36), 7628-7633.
Libby, W. F. 1955. Tritium in nature. J. Washington Acad. Sci., 45(10), 301-314.
O’Neil, J. R. 1968. Hydrogen and oxygen isotope fractionation between ice and water. J. Phys. Chem., 72(10), 3683-3684.
Östlund, H. G. and Werner, E. 1962. The electrolytic enrichment of tritium and deuterium for natural tritium measurements. Tritium in the Physical and Biological Sciences. Proc. Int. Atomic Energy Agency, 1, 95-105.
Robin, G. deQ. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16(74), 183-196.
Röthlisberger, H. 1972. Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177-203.
Röthlisberger, H. and Lang, H. 1987. Glacial hydrology. In Gurnell, A. M. and Clark, M. J, eds. Glacio-fluvial sediment transfer an Alpine perspective. Chichester, U. K., John Wiley and Sons, 207-284.
Sharp, M., Jouzel, J., Hubbard, B. and Lawson, W. 1994. The character, structure and origin of the basal ice layer of a surge-type glacier. J. Glaciol., 40(135), 327-340.
Strasser, J. C., Lawson, D. E, Evenson, E. B, Gosse, J. C and Alley, R. B. 1992. Frazil ice growth at the terminus of the Matanuska Glacier. Alaska, and its implications for sediment entrainment in glaciers and ice sheets. Geological Society of America, Abstracts with Programs, 24(3), 78.
Sugden, D. E. and Fower, A. 1987. Evidence for two zones of debris entrainment beneath the Greenland ice sheet. Nature, 328(6127), 238-241.
Walder, J. S. and Fowler, A. 1994. Channelized subglacial drainage over a deformable bed. J. Glaciol., 40(134), 3-15.
Weertman, J. 1961. Mechanism for the formation inner moraines found near the edge of cold ice caps and ice sheets. J. Glaciol., 3(30), 965-978.
Weertman, J. 1964. The theory of glacier sliding. J. Glacial., 5(39), 287-303.

Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion

  • Jeffrey C. Strasser (a1), Daniel E. Lawson (a2), Grahame J. Larson (a3), Edward B. Evenson (a1) and Richard B. Alley (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed