Skip to main content Accessibility help
×
Home

Observed winter salinity fields in the surface layer of the Arctic Ocean and statistical approaches to predicting large-scale anomalies and patterns

  • Ekaterina A. Cherniavskaia (a1), Ivan Sudakov (a2), Kenneth M. Golden (a3), Courtenay Strong (a4) and Leonid A. Timokhov (a1)...

Abstract

Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Our study is based on an extensive gridded dataset of winter salinity in the upper 50 m layer of the Arctic Ocean for the periods 1950–1993 and 2007–2012, obtained from ~20 000 profiles. We investigate the interannual variability of the salinity fields, identify predominant patterns of anomalous behavior and leading modes of variability, and develop a statistical model for the prediction of surface-layer salinity. The statistical model is based on linear regression equations linking the principal components of surface-layer salinity obtained through empirical orthogonal function decomposition with environmental factors, such as atmospheric circulation, river runoff, ice processes and water exchange with neighboring oceans. Using this model, we obtain prognostic fields of the surface-layer salinity for the winter period 2013–2014. The prognostic fields generated by the model show tendencies of surface-layer salinification, which were also observed in previous years. Although the used data are proprietary and have gaps, they provide the most spatiotemporally detailed observational resource for studying multidecadal variations in basin-wide Arctic salinity. Thus, there is community value in the identification, dissemination and modeling of the principal modes of variability in this salinity record.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observed winter salinity fields in the surface layer of the Arctic Ocean and statistical approaches to predicting large-scale anomalies and patterns
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Observed winter salinity fields in the surface layer of the Arctic Ocean and statistical approaches to predicting large-scale anomalies and patterns
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Observed winter salinity fields in the surface layer of the Arctic Ocean and statistical approaches to predicting large-scale anomalies and patterns
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Beszczynska-Möller, A, Fahrbach, E, Schauer, U and Hansen, E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci., 69(5), 852863 (doi: 10.1093/icesjms/fss056)
Borzelli, G and Ligi, R (1998) Empirical orthogonal function analysis of SST image series: a physical interpretation. J. Atmos. Ocean. Technol. 16, 682690
Bourgain, P and Gascard, JC (2012) The Atlantic and summer Pacific waters variability in the Arctic Ocean from 1997 to 2008. Geophys. Res. Lett., 39, L05603 (doi: 10.1029/2012GL051045)
Carmack, EC (2000) The Arctic Ocean's freshwater budget: sources, storage and export. In Lewis, EL, Jones, EP, Lemke, P, Prowse, TD, Wadhams, P eds. The freshwater budget of the Arctic Ocean. NATO Science Series (Series 2. Environment Security), 70, Springer, Dordrecht, 91126
Cronin, MF and Sprintall, J (2009) Wind and buoyancy-forced upper Ocean. In Steele, J, Thorpe, S, Turekian, K eds. Elements of Physical Oceanography: A derivative of the Encyclopedia of Ocean Sciences, 237245
Dickson, B (1999) Oceanography: all change in the Arctic. Nature, 397(6718), 389391
Dima, M and Lohmann, G (2007) A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Clim., 20, 27062719 (doi: 10.1175/JCLI4174.1)
Enfield, DB, Mestas-Nunez, AM and Trimble, PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080
Gelderloos, R, Straneo, F and Katsman, CA (2012) Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: lessons from the great salinity anomaly years 1968–71. J. Clim., 25, 67436755 (doi. org:10.1175/JCLI-D-11-00549.1)
Haak, H, Jungclaus, J, Mikolajewicz, U and Latif, M (2003) Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30, 1473 (doi: 10.1029/2003GL017065.9)
Hall, A and Stouffer, RJ (2001) An abrupt climate event in a coupled ocean-atmosphere simulation without external forcing. Nature, 409(6817), 171
Hannachi, A, Jolliffe, IT and Stephenson, DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol., 27, 11191152 (doi: 10.1002/joc.1499)
Hill, T and Lewicki, P (2007) Statistics: methods and applications. StatSoft, Tulsa, OK
Ivanov, V and Watanabe, E (2013) Does Arctic sea ice reduction foster shelf-basin exchange? Ecol. Appl., 23(8), 17651777
Ivanov, V, Alexseev, V, Repina, I, Koldunov, N and Smirnov, A (2012) Tracing Atlantic waters signature in the Arctic sea ice cover East of Svalbard. Adv. Meteorol., 2012 (doi: 10.1155/2012/201818)
Jackson, JM, Williams, WJ and Carmack, EC (2012) Winter sea-ice melt in the Canada Basin, Arctic Ocean. Geophys. Res. Lett., 39, L03603 (doi: 10.1029/2011GL050219)
Jahn, A and 14 others (2012) Arctic Ocean freshwater: how robust are model simulations. J. Geophys. Res. Oceans, 117(C8), 21562202 (doi: 10.1029/2012JC007907)
Karcher, M and Oberhuber, JM (2002) Pathways and modification of the upper and intermediate waters of the Arctic Ocean. J. Geophys. Res., 107 (C6) (doi: 10.1029/2000JC000530)
Karcher, M, Kauker, F, Gerdes, R, Hunke, E and Zhang, J (2007) On the dynamics of Atlantic water circulation in the Arctic Ocean. J. Geophys. Res., 112, C04S02 (doi: 10.1029/2006JC003630)
Komuro, Y (2014) The impact of surface mixing on the Arctic river water distribution and stratification in a global ice–ocean model. J. Clim., 27, 43594370 (doi: 10.1175/JCLI-D-13-00090.1)
Korhonen, M, Rudels, B, Marnela, M, Wisotzki, A and Zhao, J (2013) Time and space variability of freshwater content, heat content and seasonal ice melt in the Arctic Ocean from 1991 to 2011. Ocean Sci., 9(6), 10151055
Lebedev, NV, Karpy, VYU, Pokrovsky, OM, Sokolov, VT and Timokhov, LA (2008) Specialized data base for temperature and salinity of the Arctic Basin and marginal seas in winter (in Russian). Trudy ААNII, 448, 517
Lindsay, RW and Zhang, J (2006) Assimilation of ice concentration in an ice-ocean model. J. Atmos. Ocean. Technol., 23, 742749
Lique, C, Treguier, A, Scheinert, M and Penduff, T (2009) A model-based study of ice and freshwater transport variability along both sides of Greenland. Clim. Dyn., 33, 685705 (doi: 10.1007/s0038200805107)
Macdonald, RW, Harner, T and Fyfe, J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ., 342(1–3), 586, ISSN 0048–9697 (doi: 10.1016/j.scitotenv.2004.12.059)
Morison, J and Smith, JD (1981) Seasonal variations in the upper Arctic Ocean as observed at T-3. Geophys. Res. Lett., 8(7), 753756 (doi: 10.1029/GL008i007p00753)
Morison, J, Aagaard, K and Steele, M (2000) Recent environmental changes in the Arctic: a review. Arctic, 53(4), 359371
Morison, J and 6 others (2012) Changing Arctic Ocean freshwater pathways. Nature, 481, 6670 (doi: 10.1038/nature10705)
Nguyen, AT, Menemenlis, D and Kwok, R (2009) Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization. J. Geophys. Res., 114, C11014 (doi: 10.1029/2008JC005121)
North, GR, Bell, TL, Cahalan, RF and Moeng, FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev., 10, 699706
Overland, JE and Wang, M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19
Pokrovsky, OM and Timokhov, LA (2002) The reconstruction of the winter fields of the water temperature and salinity in the Arctic Ocean. Oceanology, 42, 822830
Polyakov, IV and 9 others (2008) Arctic Ocean freshwater changes over the past 100 years and their causes. J. Clim., 21, 364384 (doi: 10.1175/2007JCLI1748.1)
Polyakov, IV and 17 others (2010) Arctic Ocean warming contributes to reduced Polar Ice Cap. J. Phys. Oceanogr., 40, 27432756
Proshutinsky, AY and Johnson, MA (1997) Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102, 1249312514
Proshutinsky, AY and 9 others (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. J. Geophys. Res., 114 (doi: 10.1029/2008JC005104)
Rabe, B and 8 others (2011) An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006–2008 period. Deep Sea Res. Part I, 58, 173185
Rigor, IG, Wallace, JM and Colony, RL (2002) Response of sea ice to the Arctic oscillation. J. Clim., 15, 26482663
Rudels, B, Anderson, LG and Jones, EP (1996) Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 88078821
Rudels, B, Jones, EP, Schauer, U and Eriksson, P (2004) Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res., 23(2)
Schlosser, P, Bauch, D, Fairbanks, R and Bönisch, G (1994). Arctic river runoff: mean residence time on the shelves and in the halocline. Deep Sea Res., Part I, 41, 10531068
Shimada, K and 7 others (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605 (doi: 10.1029/2005GL025624.)
Steele, M and Boyd, T (1998) Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103 (doi: 10.1029/98JC00580)
Steele, M and 9 others (2001) Adrift in the Beaufort Gyre: a model intercomparison. Geophys. Res. Lett., 28, 28352838
Stigebrandt, A (1984) The north pacific: a global-scale estuary. J. Phys. Oceanogr., 14, 462470
Thompson, DWJ and Wallace, JM (1998) Observed linkages between Eurasian surface air temperature, the North Atlantic oscillation, Arctic sea-level pressure and the stratospheric polar vortex. Geophys. Res. Lett., 25, 12971300
Timmermans, M-L (2015) The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 63996406 (doi: 10.1002/2015GL064541)
Timmermans, M-L and 6 others (2011) Surface freshening in the Arctic Ocean's Eurasian Basin: an apparent consequence of recent change in the wind-driven circulation. J. Geophys. Res., 116 (doi: 10.1029/2011JC006975)
Timokhov, LA and Tanis, F (1997) Environmental working group Joint U.S.-Russian Atlas of the Arctic Ocean. National Snow and Ice Data Center, Boulder, Colorado, USA, (http://dx.doi.org/10.7265/N5H12ZX4)
Timokhov, LA, Chernyavskaya, EA, Nikiforov, EG, Polyakov, IV and Karpy, VYu (2012) Statistical model of inter-annual variability of the Arctic Ocean surface layer salinity in winter (in Russian). Probl. Arkt. Antarkt., 91, 89102
Toole, JM and 5 others (2010) Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018 (doi: 10.1029/2009JC005660)
Trenberth, KE and Hurrell, JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 9, 303319
Treshnikov, AF (1959) Arctic Ocean surface waters (in Russian). Probl. Arkt., 7, 514
Walin, G (1985) The thermohaline circulation and the control of ice ages. Palaeogeogr. Palaeoclimatol. Palaeoecol., 50(2–3), 323332, ISSN 0031-0182 (doi: 10.1016/0031-0182(85)90075-6)
Wang, J and 7 others (2009) Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706 (doi: 10.1029/08GL036706)
Weyl, PK (1968) The role of the oceans in climatic change: a theory of the Ice ages. In Mitchell, JM eds. Causes of climatic change. Meteorological Monographs, 8, American Meteorological Society, Boston, MA, 3762
Woodgate, RA, Weingartner, T and Lindsay, R (2010) The 2007 Bering strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602 (doi: 10.1029/2009GL041621)
Wu, B, Wang, J and Walsh, JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Clim., 19, 210225
Zhang, J and Rothrock, DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Weather Rev., 131(5), 681697.
Zhang, J, Woodgate, R and Moritz, R (2010) Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J. Phys. Oceanogr., 40, 17291747 (doi: 10.1175/2010JPO4323.1)

Keywords

Observed winter salinity fields in the surface layer of the Arctic Ocean and statistical approaches to predicting large-scale anomalies and patterns

  • Ekaterina A. Cherniavskaia (a1), Ivan Sudakov (a2), Kenneth M. Golden (a3), Courtenay Strong (a4) and Leonid A. Timokhov (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed