Skip to main content Accessibility help
×
Home

Observation of internal structures of snow covers with a ground-penetrating radar

  • Tatsuya Yamamoto (a1) (a2), Kenichi Matsuoka (a1) and Renji Naruse (a2)

Abstract

To complement a technique to detect internal structures of seasonal snow covers and glacier firn with ground-penetrating radar (GPR), we carried out calibration experiments and an observation of winter snow cover (5.7m thick dry snow with numerous ice layers) with an 800 MHz GPR. In particular, we aimed to discriminate periodic noise, which is inherent in GPR, from radar echoes and to obtain a relationship between the observed reflection strength and the magnitude of density contrasts. Experiments were done in air to evaluate noise levels and receiver characteristics of this system. Based on these, we removed noise from radar echoes in the snow-cover observation. We recognized numerous marked echoes in a noise-free radargram. The depths of these echoes coincided roughly with those of large density contrasts observed in the snow pit. Thus, we argue that the echoes correspond to thin ice layers. Furthermore, the minimum density contrasts detected by this GPR are found to vary from about 100 to 250 kgm–3 at 1–6m depth in the seasonal snow cover.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observation of internal structures of snow covers with a ground-penetrating radar
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Observation of internal structures of snow covers with a ground-penetrating radar
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Observation of internal structures of snow covers with a ground-penetrating radar
      Available formats
      ×

Copyright

References

Hide All
Bogorodsky, V.V., Bentley, C. R. and Gudmandsen, P. E.. 1985. Radioglaciology. Dordrecht, etc., D. Reidel Publishing Co.
Clarke, T. S. and Bentley, C. R.. 1994. High-resolution radar on Ice Stream B2, Antarctica: measurements of electromagnetic wave speed in firn and strain history fromburied crevasses. Ann. Glaciol., 20, 153–159.
Fujita, S., Matsuoka, T., Ishida, T., Matsuoka, K. and Mae, S.. 2000. A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 185–212.
Kohler, J., Moore, J., Kennett, M., Engeset, R. and Elvehøy, H.. 1997. Using ground-penetrating radar to image previous years’ summer surfaces for mass-balance measurements. Ann. Glaciol., 24, 355–360.
Matsuoka, K., Aoki, T., Yamamoto, T. and Naruse, R.. 2003. Field-performance tests of a portable low-frequency ice-penetrating radar and a ground-penetrating radar at Athabasca Glacier, Canadian Rockies. Bull. Glaciol. Res. 20, 49–55.
Moore, J.C. and 8 others. 1999. High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar. J. Glaciol., 45(151), 524–532.
Murray, T., Gooch, D. L. and Stuart, G.W.. 1997. Structures within the surge front at Bakaninbreen, Svalbard, using ground-penetrating radar. Ann. Glaciol., 24, 122–129.
Murray, T., Stuart, G.W., Fry, M., Gamble, N. H. and Crabtree, M. D.. 2000. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. J. Glaciol., 46(154), 389–398.
Paren, J.G. 1981. Correspondence. Reflection coefficient at a dielectric interface. J. Glaciol., 27(95), 203–204.
Pinglot, J. F., Hagen, J.O., Melvold, K., Eiken, T. and Vincent, C.. 2001. A mean net accumulation pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet, Svalbard. J. Glaciol., 47(159), 555–566.
Retzlaff, R. and Bentley, C. R.. 1993. Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses. J. Glaciol., 39(133), 553–561.
Tiuri, M.T., Sihvola, A. H., Nyfors, E.G. and Hallikainen, M.T.. 1984. The complex dielectric constant of snow at microwave frequencies. IEEE J. Oceanic Eng., OE-9(5), 377–382.
Ulaby, F.T., Moore, R. K. and Fung, A. K.. 1981. Microwave remote sensing, active and passive. Vol. 1. Fundamentals and radiometry. Reading, MA, Addison-Wesley Publishing Co.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed